Fundamentals of Piezoelectricity and Piezoelectric Materials for Ultrasonic Motors

  • Chapter
Ultrasonic Motors

Abstract

The development of ultrasonic motors is a highlight in the application of piezoelectric materials. Ultrasonic motors take advantage of converse piezoelectricity of piezoelectric materials to yield mechanical output from converting electrical energy. It is no doubt that piezoelectric materials are in the central position that controls the performance of the devices. In this chapter, we will review piezoelectric materials and their properties from the aspect of their applications in ultrasonic motors. The chapter begins with a brief overview of historical development of piezoelectric materials, and then a detailed explanation of the electrical and mechanical properties of piezoelectric materials will be discussed in the second and the third sections, where the piezoelectric constitutive equations are specially stressed. Piezoelectric vibrators, as basic units of piezoelectric devices, and their vibration types will be described in sequence. In the last two sections, the application of piezoelectric materials in ultrasonic motors and some advances in novel materials will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 175.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhiwen Yin. Physics of Dielectrics (Second Edition). Bei**g: Press, 2005:1–8. (in Chinese)

    MATH  Google Scholar 

  2. B Jaffe, W R Cook, H Jaffe. Piezoelectric Ceramics. New York: Academic Press, 1971:1–5.

    Google Scholar 

  3. Duan Feng, Changxu Shi, Zhiguo Liu. Introduction to Material Science-An Integrated Approach. Bei**g: Chemical Industry Press, 2002:324–350. (in Chinese)

    Google Scholar 

  4. B Jaffe, R S Roth, S Marzullo. Piezoelectric properties of lead zirconate-lead titanate solid solution ceramics. J. Appl. Phys., 1954, 25:809–100.

    Article  Google Scholar 

  5. R F Service. Shape-changing crystals get shifter. Science, 1997, 275: 1878.

    Article  Google Scholar 

  6. Changxu Shi, Hengde Li, Lian Zhou. Handbook of Materials Science and Engineering. Bei**g: Chemical Industry Press, 2006: 7–76. (in Chinese)

    Google Scholar 

  7. Shenghe Lin, Zhibi Ye, Yubin Wang. Piezoelectric Ceramics. Bei**g: Defense Industry Press, 1980: 17–40. (in Chinese)

    Google Scholar 

  8. State bureau of technical supervision. National Standards of the People’s Republic of China GB/T 3389. 1–1996. Bei**g: Standards Press of China, 1997: 2–3.

    Google Scholar 

  9. Daoren Song, Mingshan **ao. Piezoelectricity and Its Application. Bei**g: Popular Science Press, 1980:19–38. (in Chinese)

    Google Scholar 

  10. Yuan Lit Zikai Qin, Zhigang Zhou. Measurement for Piezoelectric and Ferroelectric Materials. Bei**g: Science Press, 2001:19–21. (in Chinese)

    Google Scholar 

  11. Yuhuan Xu. Ferroelectric and Piezoelectric Materials. Bei**g: Science Press, 1978: 118–202. (in Chinese)

    Google Scholar 

  12. Weilie Zhong. Physics of Ferroelectrics. Bei**g: Science Press, 1996: 310–314. (in Chinese)

    Google Scholar 

  13. J G Smits, S I Dalke, T K Cooney. The constituent equations of piezoelectric bimorphs. Sensors and Actuators A, 1991, 28: 41–61.

    Article  Google Scholar 

  14. J Qiu, J Tani, Ueno, et al. Fabrication and high durability of functionally graded piezoelectric bending actuators. Journal of Smart Materials and Structures, 2003, 12: 115–121.

    Article  Google Scholar 

  15. R B Williams, G Park, D J Inman. An overview of composite actuators with piezoelectric fibers. Proc. of SPIE-The International Society of Optical Structures, 2002, 4753: 421–427.

    Google Scholar 

  16. J Qiu, N Yamada, J Tani, et al. Fabrication of piezoelectric fibers with metal core. Proc. of SP IE s 10th International Symposium on Smart Structures and Materials. San Diego, CA., Active Materials: Behavior and Mechanics. D C Lagoudas, Ed., 2003, 5053: 475–483.

    Google Scholar 

  17. G Sebald, J H Qiu, D Guyomar. Modeling the lateral resonance mode of piezoelectric fibers with metal core. Journal of Physics D, 2005, 38: 3733–3740.

    Article  Google Scholar 

  18. Qian Li, Ying Yang, Dan dan Wan, et al. Micro structural characteristics and electrical properties of x Pb(Mg1/3Ta2/3)O3-(0.1−x)Pb(Mn1/3Sb2/3)O3-0.9Pb(Zr0.52Ti0.48)O3 high power piezoelectric ceramics. Materials Science and Engineering B, 2009, 163: 145–150. (in Chinese)

    Article  Google Scholar 

  19. J Ryu, D S Park, D Y Jeong. Effect of La2O3 do** on the piezoelectric properties of PbZrO3-PbTiO3-Pb(Zn1/3 Nb2/3)O3-Pb(Sn1/3 Nb2/3) O3−y MnO3 ceramics for high-power applications. Journal of Ceramic Processing Research, 2009, 10: 386–390. (in Chinese)

    Google Scholar 

  20. G H Haertling. Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 1999, 82: 797–818. (in Chinese)

    Article  Google Scholar 

  21. Fuxue Zhang, Likun Wang. Modern Piezoelectricity (Volume 1, Second Edition). Bei**g: Science Press, 2003: 97–98. (in Chinese)

    Google Scholar 

  22. J Van Randeraat, R B Setterington. Piezoelectric Ceramics. Mullard Limited, 1974: 15–16.

    Google Scholar 

  23. S E Park, T R Shrout. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82:1804–1811.

    Article  Google Scholar 

  24. G Roger, D Busch. A survey of micro-actuator technologies for future spacecraft missions. [2009-05-26]. http://www.robotstore.com/support.asp.

    Google Scholar 

  25. S E Park, W Hackenberger. High performance single crystal piezoelectrics: applications and issues. Current Opinion in Solid State & Materials Science, 2002, 6: 11–18.

    Article  Google Scholar 

  26. M Levy, S Ghimire, A K Bandyopadhyay, et al. PZN-PT single-crystal thin film monomorph actuator. Ferroelectrics Letters Section, 2002, 29(3–4): 29–40.

    Article  Google Scholar 

  27. K S Moon, M Levy, Y K Hong, et al. Axial displacement measurement of a single-crystal actuator using phase-shift interferometry. IEEE Transactions on Industrial Electronics, 2005, 52(4):953–959.

    Article  Google Scholar 

  28. M Yang, M Zhu, C Robert, et al. Design and evaluation of linear ultrasonic motors for a cardiac compression assist device. Sensors and Actuators A, 2005, 119: 214–220.

    Article  Google Scholar 

  29. S Dong, L Yan, N Wang. A small, linear, piezoelectric ultrasonic cryomotor. Applied Physics Letters, 86: 2005053501.

    Google Scholar 

  30. Z Y Feng, T H He, H Q Xu, et al. High electric-field-induced strain of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals in multilayer actuators. Solid State Communications, 2004, 130(8): 557–562.

    Article  Google Scholar 

  31. S E Park, T R Shrout. Relaxor based ferroelectric single crystals for electro-mechanical actuators. Materials Research Innovations, 1997, 1(1): 20–25.

    Article  Google Scholar 

  32. S Genti, D Damjanovic, N Setter. Pb(Mg1/3Nb2/3)O3 and (1−x) Pb(Mg1/3 Nb2/3)O3−x Pb-TiO3 relaxor ferroelectric thick films: processing and electrical characterization. Journal of Electroceramics, 2004, 12(3): 151–161.

    Article  Google Scholar 

  33. V Y Topolov. Orientation relationships between electromechanical properties of monoclinic 0.91Pb(Zn1/3 Nb2/3) O3-0.09PbTiO3 single crystals. Sensors and Actuators A-Physical, 2005, 121(1): 148–155.

    Article  Google Scholar 

  34. S C Woody, S T Smith, X N Jiang, et al. Performance of single-crystal Pb(Mg1/3Nb2/3O3)-32%PbTiO3 stacked actuators with application to adaptive structures. Review of Scientific Instruments, 2005, 76(7): 075112(1–8).

    Google Scholar 

  35. T Takenaka, H Nagata. Current status and prospects of lead-free piezoelectric ceramics, J. Euro. Ceramic. Society, 2005, 25:2693–2700.

    Article  Google Scholar 

  36. Zhiwen Yin. Physics of Dielectrics (Second Edition). Bei**g: Science Press, 2005: 778–831.

    Google Scholar 

  37. C P Araujo, J F Scott, G W Taylor. Ferroelectric Thin Films: Synthesis and Basic Properties. Amsterdam: Gordon and Breach Science Publishers, 1996: 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Science Press Bei**g and Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, C. (2011). Fundamentals of Piezoelectricity and Piezoelectric Materials for Ultrasonic Motors. In: Ultrasonic Motors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15305-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15305-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15304-4

  • Online ISBN: 978-3-642-15305-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation