Subnetwork State Functions Define Dysregulated Subnetworks in Cancer

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2010)

Abstract

Emerging research demonstrates the potential of protein-protein interaction (PPI) networks in uncovering the mechanistic bases of cancers, through identification of interacting proteins that are coordinately dysregulated in tumorigenic and metastatic samples. When used as features for classification, such coordinately dysregulated subnetworks improve diagnosis and prognosis of cancer considerably over single-gene markers. However, existing methods formulate coordination between multiple genes through additive representation of their expression profiles and utilize greedy heuristics to identify dysregulated subnetworks, which may not be well suited to the potentially combinatorial nature of coordinate dysregulation. Here, we propose a combinatorial formulation of coordinate dysregulation and decompose the resulting objective function to cast the problem as one of identifying subnetwork state functions that are indicative of phenotype. Based on this formulation, we show that coordinate dysregulation of larger subnetworks can be bounded using simple statistics on smaller subnetworks. We then use these bounds to devise an efficient algorithm, Crane, that can search the subnetwork space more effectively than simple greedy algorithms. Comprehensive cross-classification experiments show that subnetworks identified by Crane significantly outperform those identified by greedy algorithms in predicting metastasis of colorectal cancer (CRC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schadt, E.E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D., Sieberts, S.K., Monks, S., Reitman, M., Zhang, C., Lum, P.Y., Leonardson, A., Thieringer, R., Metzger, J.M., Yang, L., Castle, J., Zhu, H., Kash, S.F., Drake, T.A., Sachs, A., Lusis, A.J.: An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics 37(7), 710–717 (2005)

    Article  Google Scholar 

  2. Papin, J.A., Hunter, T., Palsson, B.O., Subramaniam, S.: Reconstruction of cellular signalling networks and analysis of their properties. Nature Reviews Molecular Cell Biology 6(2), 99–111 (2005)

    Article  Google Scholar 

  3. Ideker, T., Sharan, R.: Protein networks in disease. Genome Res. 18(4), 644–652 (2008)

    Article  Google Scholar 

  4. Rich, J., Jones, B., Hans, C., Iversen, E., McClendon, R., Rasheed, A., Bigner, D., Dobra, A., Dressman, H., Nevins, J., West, M.: Gene expression profiling and genetic markers in glioblastoma survival. Cancer Research 65, 4051–4058 (2005)

    Article  Google Scholar 

  5. Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Robinson, M.D., O’Connor, L., Li, M., Taylor, R., Dharsee, M., Ho, Y., Heilbut, A., Moore, L., Zhang, S., Ornatsky, O., Bukhman, Y.V., Ethier, M., Sheng, Y., Vasilescu, J., Abu-Farha, M., Lambert, J.P.P., Duewel, H.S., Stewart, I.I., Kuehl, B., Hogue, K., Colwill, K., Gladwish, K., Muskat, B., Kinach, R., Adams, S.L.L., Moran, M.F., Morin, G.B., Topaloglou, T., Figeys, D.: Large-scale map** of human protein-protein interactions by mass spectrometry. Molecular systems biology 3 (2007)

    Google Scholar 

  6. Goh, K.I., Cusick, M.E., Valle, D., Childs, B., Vidal, M., Barabasi, A.L.: The human disease network. PNAS 104(21), 8685–8690 (2007)

    Article  Google Scholar 

  7. Rhodes, D.R., Chinnaiyan, A.M.: Integrative analysis of the cancer transcriptome. Nat. Genet. 37(suppl.) (June 2005)

    Google Scholar 

  8. Franke, L., Bakel, H., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., Wijmenga, C.: Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am. J. Hum. Genet. 78(6), 1011–1025 (2006)

    Article  Google Scholar 

  9. Karni, S., Soreq, H., Sharan, R.: A network-based method for predicting disease-causing genes. Journal of Computational Biology 16(2), 181–189 (2009)

    Article  Google Scholar 

  10. Lage, K., Karlberg, O.E., Størling, Z.M., Páll, P.A.G., Rigina, O., Hinsby, A.M., Tümer, Z., Pociot, F., Tommerup, N., Moreau, Y., Brunak, S.: A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature Biotechnology 25(3), 309–316 (2007)

    Article  Google Scholar 

  11. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. In: ISMB, pp. 233–240 (2002)

    Google Scholar 

  12. Guo, Z., Li, Y., Gong, X., Yao, C., Ma, W., Wang, D., Li, Y., Zhu, J., Zhang, M., Yang, D., Wang, J.: Edge-based scoring and searching method for identifying condition-responsive protein–protein interaction sub-network. Bioinformatics 23(16), 2121–2128 (2007)

    Article  Google Scholar 

  13. Nacu, Ş., Critchley-Thorne, R., Lee, P., Holmes, S.: Gene expression network analysis and applications to immunology. Bioinformatics 23(7), 850–858 (2007)

    Article  Google Scholar 

  14. Liu, M., Liberzon, A., Kong, S.W., Lai, W.R., Park, P.J., Kohane, I.S., Kasif, S.: Network-based analysis of affected biological processes in type 2 diabetes models. PLoS Genetics 3(6), e96 (2007)

    Google Scholar 

  15. Cabusora, L., Sutton, E., Fulmer, A., Forst, C.V.: Differential network expression during drug and stress response. Bioinformatics 21(12), 2898–2905 (2005)

    Article  Google Scholar 

  16. Patil, K.R., Nielsen, J.: Uncovering transcriptional regulation of metabolism by using metabolic network topology. PNAS 102(8), 2685–2689 (2005)

    Article  Google Scholar 

  17. Scott, M.S., Perkins, T., Bunnell, S., Pepin, F., Thomas, D.Y., Hallett, M.: Identifying regulatory subnetworks for a set of genes. Mol. Cell Prot., 683–692 (2005)

    Google Scholar 

  18. Chowdhury, S.A., Koyutürk, M.: Identification of coordinately dysregulated subnetworks in complex phenotypes. In: PSB, pp. 133–144 (2010)

    Google Scholar 

  19. Ulitsky, I., Karp, R.M., Shamir, R.: Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 347–359. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  20. Chuang, H.Y., Lee, E., Liu, Y.T., Lee, D., Ideker, T.: Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3 (October 2007)

    Google Scholar 

  21. Nibbe, R.K., Ewing, R., Myeroff, L., Markowitz, M., Chance, M.: Discovery and scoring of protein interaction sub-networks discriminative of late stage human colon cancer. Mol. Cell Prot. 9(4), 827–845 (2009)

    Article  Google Scholar 

  22. Nibbe, R.K., Koyutürk, M., Chance, M.R.: An integrative -omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput. Biol. 6(1), e1000639 (2010)

    Google Scholar 

  23. Anastassiou, D.: Computational analysis of the synergy among multiple interacting genes. Mol. Syst. Biol. 3(83) (2007)

    Google Scholar 

  24. Watkinson, J., Wang, X., Zheng, T., Anastassiou, D.: Identification of gene interactions associated with disease from gene expression data using synergy networks. BMC Systems Biology 2(1) (2008)

    Google Scholar 

  25. Quackenbush, J.: Microarray data normalization and transformation. Nat. Genet. 32(suppl.), 496–501 (2002)

    Article  Google Scholar 

  26. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the boolean network model. In: Pacific Symposium on Biocomputing, pp. 17–28 (1999)

    Google Scholar 

  27. Koyutürk, M., Szpankowski, W., Grama, A.: Biclustering gene-feature matrices for statistically significant dense patterns. In: IEEE Computational Systems Bioinformatics Conference (CSB 2004), pp. 480–484 (2004)

    Google Scholar 

  28. Akutsu, T., Miyano, S.: Selecting informative genes for cancer classification using gene expression data. In: Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, pp. 3–6 (2001)

    Google Scholar 

  29. Shmulevich, I., Zhang, W.: Binary analysis and optimization-based normalization of gene expression data. Bioinformatics 18(4), 555–565 (2002)

    Article  Google Scholar 

  30. Chowdhury, S.A., Nibbe, R.K., Chance, M.R., Koyutürk, M.: Supplement to “Subnetwork state functions define dysregulated subnetworks in cancer”, http://vorlon.case.edu/~mxk331/crane/recomb2010_supplement.pdf

  31. Smyth, P., Goodman, R.M.: An information theoretic approach to rule induction from databases. IEEE Trans. on Knowl. and Data Eng. 4(4), 301–316 (1992)

    Article  Google Scholar 

  32. Paschos, K., Canovas, D., Bird, N.: The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal 21(5), 665–674 (2009)

    Article  Google Scholar 

  33. Zucker, S., Vacirca, J.: Role of matrix metalloproteinases (mmps) in colorectal cancer. Cancer Metastasis Rev. 23(1-2), 101–117 (2004)

    Article  Google Scholar 

  34. McConnell, B., Yang, V.: The role of inflammation in the pathogenesis of colorectal cancer. Curr. Colorectal Cancer Rep. 5(2), 69–74 (2009)

    Article  Google Scholar 

  35. Markowitz, S., Bertagnolli, M.: Molecular origins of cancer: Molecular basis of colorectal cancer. N. Engl. J. Med. 361(25), 2449–2460 (2009)

    Article  Google Scholar 

  36. Vishnubhotla, R., Sun, S., Huq, J., Bulic, M., Ramesh, A.: Rock-ii mediates colon cancer invasion via regulation of mmp-2 and mmp-13 at the site of invadopodia as revealed by multiphoton imaging. Laboratory Investigation 87, 1149–1158 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chowdhury, S.A., Nibbe, R.K., Chance, M.R., Koyutürk, M. (2010). Subnetwork State Functions Define Dysregulated Subnetworks in Cancer. In: Berger, B. (eds) Research in Computational Molecular Biology. RECOMB 2010. Lecture Notes in Computer Science(), vol 6044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12683-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12683-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12682-6

  • Online ISBN: 978-3-642-12683-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation