Theoretical Analysis of Colloid-facilitated Transport of Radionuclides by Groundwater

  • Chapter
  • First Online:
Actinide Nanoparticle Research

Abstract

Mechanisms of colloid-facilitated transport of radionuclides by groundwater are considered for three types of radioactive colloids: intrinsic colloids, primary colloids and pseudocolloids. Effect of elevated velocity of colloid facilitated migration is analyzed. The general characteristic is introduced for the estimation of the role of colloidal species of radionuclide migration velocity. A new probabilistic model of colloid retardation by the host rocks is developed taking into account heterogeneity of the colloid particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Airey PL (1986) Radionuclide migration around uranium ore bodies in the Alligator Rivers region of the northern territory of Australia – analogue of radioactive waste repositories – a review. Chem Geol, 55:255–268

    Article  CAS  Google Scholar 

  • Amme M, Aldave de las Heras L, Betti M, Lang H, Stöckl M (2004) Effects of colloidal and dissolved silica on the dissolution of UO2 nuclear fuel in groundwater leaching tests. J Radioanalyt Nucl Chem, 261:327–336

    Google Scholar 

  • Aoki H, Kurosaki Y, Anzai H (1979) Study on the tubular pinch effect in a pipe flow. Bull. Jpn Soc Mech Eng, 22:206–212

    Google Scholar 

  • Artinger R, Kienzler B, Schüssler W, Kim JI (1998) Effects of humic substances on the 241Am migration in a sandy aquifer: column experiments with Gorleben ground-water/sediment systems. J Contamin Hydrol, 35:261–275

    Article  CAS  Google Scholar 

  • Bates JK, Bradley JP, Teetsov A, Bradley CR, Buchholtz ten Brink M (1992) Colloid formation during waste form reaction: Implication for nuclear waste disposal. Science, 256:649–651

    Article  CAS  Google Scholar 

  • Bochever FM, Oradovskaya AE (1972) Hydrogeological substantiation of protection of groundwater and water intakes from pollutions. Nedra, Moscow

    Google Scholar 

  • Buck EC, Bates JK (1999) Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Appl Geochem, 14:635–659

    Article  CAS  Google Scholar 

  • Buesseler KO, Bauer JE, Chen RF, Eglinton TI, Gustafsson O, Landing W, Mopper K, Moran SB, Santschi PH, VernonClark R, Wells ML (1996) An intercomparison of cross-flow filtration techniques used for sampling marine colloids: Overview and organic carbon results. Mar Chem, 55:1–31

    Article  CAS  Google Scholar 

  • Champ DR, Schroeter J (1988) Bacterial transport in fractured rock – a field-scale tracer test at the Chalk River nuclear laboratories. Water Sci Technol, 20:81–87

    CAS  Google Scholar 

  • Davis JA (1982) Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Acta, 46:2381–2393

    Article  CAS  Google Scholar 

  • Davis JA, Gloor R (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environ Sci Technol, 15:1223–1229

    CAS  Google Scholar 

  • deMarsily G (1986) Quantitative hydrogeology. Academic, Orlando

    Google Scholar 

  • Ebert WL, Bates JK (1993) A comparison of glass reaction at high and low glass surface/solution volume. Nucl Tech, 104:372–384

    CAS  Google Scholar 

  • Eichholz GG, Wahlig BG, Powell GF, Craft TF (1982) Subsurface migration of radioactive waste materials by particulate transport. Nucl Tech, 58:511–520

    CAS  Google Scholar 

  • Elimelech M, Nagai M, Ko CH, Ryan JN (2000) Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environ Sci Technol, 34:2143–2148

    Article  CAS  Google Scholar 

  • Fairhurst AJ, Warwick P, Richardson S (1995) The influence of humic acid on the absorption of europium onto inorganic colloids as a function of pH. Coll Surf A, 99:187–199

    Article  CAS  Google Scholar 

  • Fane AG, Fell CJD, Waters AG (1981) The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes. J Membr Sci, 9:245–262

    Article  CAS  Google Scholar 

  • Finn PA, Buck EC, Gong M, Hoh JC, Emery JW, Hafenrichter LD, Bates JK (1994) Colloidal products and actinide species in leachate from spent nuclear fuel. Radiochim Acta, 66/67:189–195

    Google Scholar 

  • Fortner JA, Mertz CJ, Wolf SF, Jemian PR (2003) Natural groundwater colloids from the USGS J-13 well in Nye county, NV: a study using SAXS and TEM. In: Finch RJ, Bullen DB (eds) Scientific basis for nuclear waste management XXVIV. Mater Res Soc Proc, 757:483–488

    CAS  Google Scholar 

  • Frolov YuG (1988) Colloid chemistry course. Surface effects and dispersed system. Khimiya, Moscow

    Google Scholar 

  • Gardiner CW (1983) Handbook of stochastic methods for physics, chemistry, and the natural sciences. Springer, Berlin

    Google Scholar 

  • Glagolenko YuV, Dzekun EG, Drozhko EG (1996) Strategy of radioactive waste management at production association “Mayak”. Voprosy radiatsionnoy bezopasnosti, 2:3–10

    Google Scholar 

  • Gregg SJ, Sing KSW (1967) Adsorption, surface area, and porosity. Academic Press. London

    Google Scholar 

  • Hara K, Takeda S, Masuda S (1996) Research and development program of geological disposal of high-level radioactive waste in Japan. In: Proc. Int. conf. on deep geological disposal of radioactive waste, September 16-19, 1996. Winnipeg, Canada, 1-3 – 1-21

    Google Scholar 

  • Harrington RV, Apps JA (1982) Solidification of high-level waste. Undergr Space, 6:259–263

    Google Scholar 

  • Harvey RW, Garabedian SP (1991) Use of colloid filtration theory in modeling movement of bacteria through contaminated sandy aquifer. J Contamin Hydrol, 25:178–185

    CAS  Google Scholar 

  • Harvey RW, George LH, Smith R, LeBlanc DR (1989) Transport of microspheres and indigenous bacteria through a sandy aquifer: results of natural- and forced-gradient tracer experiments. Environ Sci Technol, 23:51–56

    Article  CAS  Google Scholar 

  • Inagaki Y, Sakata H, Idemitsu K, Arima T, Banda T, Maeda T, Matsumoto S, Tamura Y, Kikkawa S (1998) Effects of eatwr redox conditions and presence of magnetite on leaching of Pu and Np from HLW glass. In: McKinley IG, McCombie C (eds) Scientific basis for nuclear waste management XXI. Mater Res Soc Proc 506:177–184

    Article  CAS  Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada Test Site. Nature, 397:56–59

    Article  CAS  Google Scholar 

  • Keswick BH, Gerba CP (1980) Viruses in groundwater. Environ Sci Technol 14:1290–1297

    Article  Google Scholar 

  • Kim JI, Delakowitz B, Zeh P, Klotz D, Lazik D (1994) A column experiment for the study of colloidal radionuclide migration in Gorleben aquifer system. Radiochim Acta, 66/67:165–171

    Google Scholar 

  • Klyachko VA, Apel’tsyn IE (1971) Purification of natural water. Stroyizdat, Moscow

    Google Scholar 

  • Knapp RB, Chiarappa ML, Durham WB (2000) An experimental exploration of the transport and capture of abiotic colloids in a single fracture. Water Resour Res, 36:3139–3149

    Article  Google Scholar 

  • Krauskopf KB (1988) Geology of high-level nuclear waste disposal. Annu Rev Earth Planet Sci, 16:173–200

    Article  CAS  Google Scholar 

  • Kretzschmar R, Schðfer Th (2005) Metal retention and transport on colloidal particles in the environment. Elements 1:205–210

    Google Scholar 

  • Laverov NP (2006) Fuel-energy resources: state and conservation. In: National reference book “Fuel and energy complex of Russia”. Center of strategic programs, Moscow

    Google Scholar 

  • Laverov NP, Kantsel AV, Lisitsyn AK (1991) Main problems of radiogeoecology concerning disposal of radioactive waste. Atomnaya Energiya, 71:523–534

    CAS  Google Scholar 

  • Laverov NP, Omelyanenko BI, Velichkin VI (1994) Geoecological aspects of radioactive waste disposal. Geoecologiya, 6:3–20

    Google Scholar 

  • Laverov NP, Velichkin VI, Omel’yanenko BI, Yudintsev SV (2003) Geochemistry of actinides during the long-term storage and disposal of spent nuclear fuel. Geol Ore Depos, 45:1–18

    Google Scholar 

  • Ledin A, Karlsson S, Dücker A, Allard B (1994) The adsorption of Europium to colloidal iron oxyhydroxides and quartz – the impact of pH and an aquatic fulvic acid. Radiochim Acta, 66/67:213–230

    Google Scholar 

  • Loitsiansky LG (1973) Mechanics of fluids and gases. Nauka, Moscow.

    Google Scholar 

  • Malkovsky VI, Pek AA, Omelyanenko BI (1995) Influence of the inetrwell distance on the thermoconvective transport of radionuclides by groundwater from a two-well high-level nuclear waste repository. In: Slate S, Feizollahi F, Creer J (eds.) Cross-cutting issues and management of high-level waste and spent fuel, 5th International conference on radioactive waste management and environmental remediation, Berlin, September 3–7, 1995. ASME, New York

    Google Scholar 

  • Malkovsky VI, Pek AA, Velichkin VI (1997) Transport of radionuclides from HLW repository by regional flow of groundwater. Voprosy radiatsionnoy bezopasnosti, 4:9–15

    Google Scholar 

  • Malkovsky VI, Dikov YuP, Kalmykov SN, Buleev MI (2009) Structure of colloid particles in groundwaters on the territory of the Mayak Production Association and its impact on the colloid transport of radionuclides in subsoil environments. Geochem Int, 47:1100–1106

    Article  Google Scholar 

  • McCarthy J, Czerwinski KR, Sanford WE, Jardine PM, Marsh JD (1998a) Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. J Contamin Hydrol, 30:49–77

    Article  CAS  Google Scholar 

  • McCarthy JF, Sanford WE, Stafford PL (1998b) Lanthanide field tracers demonstrate enhanced transport of transuranic radionuclides by natural organic matter. Environ Sci Technol, 32:3901–3906

    Article  CAS  Google Scholar 

  • McTigue DF, Givler RC, Nunziato JW (1986) Rheological effects of nonuniform particle distribution in dilute suspensions. J Rheol, 30:1053–1076

    Article  Google Scholar 

  • Mercier F, Moulin V, Barre N, Casanova F, Toulhoat P (2001) Study of the repartition of metallic trace elements in humic acids colloids: potentialities of nuclear microprobe and complementary technique. Anal Chim Acta, 427:101–110

    Article  CAS  Google Scholar 

  • Mironenko VA, Rumynin VG (1998) Problems of geoecology. Vol. 1. Moscow Mining University, Moscow

    Google Scholar 

  • Missana T, Turrero MJ, Adell A (2000) Surface cherge and electrophoretic properties of colloids obtained from homoionic and natural bentonite. In: Smith RW, Shoesmith DW (eds). Scientific basis for nuclear waste management XXIII. Mater Res Soc Proc, 608:255–260

    CAS  Google Scholar 

  • Morel FMM, Gschwend PM (1987) The role of colloids in the partitioning of solutes in natural waters. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York

    Google Scholar 

  • Nyhan JW, Drennon BJ, Abeele WV, Wheeler ML, Purtymun WD, Trujillo G, Herrera WJ, Booth JW (1985) Distribution of plutonium and americium beneath a 33-yr-old liquid waste disposal site. J Environ Qual, 14:501–509

    Article  CAS  Google Scholar 

  • O’Melia CR (1987) Particle-particle interaction. In: Stumm W (ed) Aquatic surface chemistry. Wiley, New York

    Google Scholar 

  • Olofsson U, Allard B, Torstenfelt B, Andersson K (1982) Properties and mobilities of actinide colloids in geologic systems. In: Lutze W (ed) Scientific basis for nuclear waste management V. Elsevier, New York

    Google Scholar 

  • Orlandini KA, Penrose WR, Harvey BR, Lovett MB, Findlay MW (1990) Colloidal behavior of actinides in an oligotrophic lake. Environ Sci Tech, 24:706–712

    Article  CAS  Google Scholar 

  • Penrose WR, Polzer WL, Essington EH, Nelson DM, Orlandini KA (1990) Mobility of plutonium and americium through a shallow aquifer in a semiarid region. Environ Sci Technol, 24:228–234

    Article  CAS  Google Scholar 

  • Pham MK, Garnier JM (1998) Distribution of trace elements associated with dissolved compounds (<0.45 μm – 1nm) in freshwater using coupled (frontal cascade) ultrafiltration and chromatographic separations. Environ Sci Technol, 32:440–449

    Google Scholar 

  • Puls RW, Powell RM (1992) Transport of inorganic colloids through neutral aquifer material: implications for contaminant transport. Environ Sci Technol, 26:614–621

    Article  CAS  Google Scholar 

  • Ringwood AE (1980) Safe disposal of high-level radioactive wastes. Fortschritt in Mineralogie, 58:149–168

    Google Scholar 

  • Roache PJ (1976) Computational fluid dynamics. Hermosa, Albuquerque

    Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Coll Surf A, 107:1–56

    Article  CAS  Google Scholar 

  • Ryan JN, Elimelech M, Ard RA, Harvey RW, Johnson PR (1999) Bacteriophage PRD1 and silica colloid transport and recovery in an iron oxide-coated sand aquifer. Environ Sci Technol, 33:63–73

    Article  CAS  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech, 22:385–400

    Article  Google Scholar 

  • Salbu B, Bjørnstaad HE (1990) Analytical techniques for determining radionuclides associated with colloids in waters. J Radioanal Nucl Chem, 138:337–346

    Article  CAS  Google Scholar 

  • Schäfer Th, Artinger R, Dardenne K, Bauer A, Schuessler W, Kim JI (2003) Colloid-borne americium migration in Gorleben groundwater: significance of iron secondary phase transformation. Environ Sci Tech, 37:1528–1534

    Article  Google Scholar 

  • Shonnard DR, Taylor RT, Hanna ML, Boro CO, Duba AG (1994) Injection-attachment of Methylosinus trichosporium OB3b in a two-dimensional miniature sand-filled aquifer simulator. Water Resour Res, 30:25–35

    Article  CAS  Google Scholar 

  • Short SA, Lowson RT (1988) 234U/238U and 230Th/234U activity ratios in the colloidal phases of aquifers in lateritic weathered zones. Geochim Cosmochim Acta, 52:2555–2563

    Article  CAS  Google Scholar 

  • Smith PA, Degueldre C (1993) Colloid-facilitated transport of radionuclides through fractured media. J Contamin Hydrol, 13:143–166

    Article  CAS  Google Scholar 

  • Smith DK, Finnegan DL, Bowen SM (2003) An inventory of long-lived radionuclides residual from underground nuclear testing at the Nevada test site, 1951–1992. J Environ Rad, 67:35–51

    Article  CAS  Google Scholar 

  • Spielman LA (1977) Particle capture from low-speed laminar flows. In: Van Dyke M, Wehausen JV, Lumley JL (eds) Annual review of fluid mechanics. vol. 9. Annual Review, Palo Alto

    Google Scholar 

  • Tait JC, Hayward PJ, Devgun JC (1989) Technologies for contaminant immobilization, and disposal of radioactive wastes. Can J Civ Eng, 16:444–458

    Article  Google Scholar 

  • Tip** E (1981) The adsorption of aquatic humic substances by iron oxides. Geochim Cosmochim Acta, 45:191–199

    Article  CAS  Google Scholar 

  • Vilks P, Degueldre C (1991) Sorption behaviour of 85Sr, 131I and 137Cs on colloids and suspended particles from the Grimsel test site, Switzerland. Appl Geochem, 6:553–563

    Article  CAS  Google Scholar 

  • Vilks P, Miller HG, Doern DC (1991) Natural colloids and suspended particles in the Whiteshell Research Area, Manitoba, Canada, and their potential effect on radiocolloid formation. Appl Geochem, 6:565–574

    Article  CAS  Google Scholar 

  • Voloshuk VM (1984) Kinetic theory of coagulation. Gidrometeoizdat. Moscow

    Google Scholar 

  • Zachara JM, Smith SC, Liu Ch, McKinley JP, Serne RJ, Gassman PL (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta, 66:199–211

    Article  Google Scholar 

  • Zhuang J, Flury M, ** Y (2003) Colloid-facilitated Cs transport through water-saturated Hanford sediment and Ottawa sand. Environ Sci Technol, 37:4905–4911

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges support from International Science & Technology Center under Award Number 3290 and from Russian Foundation of Basic Research under Award Number 09-05-00347.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Malkovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malkovsky, V. (2011). Theoretical Analysis of Colloid-facilitated Transport of Radionuclides by Groundwater. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_8

Download citation

Publish with us

Policies and ethics

Navigation