Cell Wall Targeted Antibiotics

  • Chapter
  • First Online:
Prokaryotic Cell Wall Compounds

Abstract

The biosynthesis of murein occurs in three stages, which take place in (1) the cytoplasm forming muropeptide precursors, (2) the inner side of the cytoplasmic membrane involving the undecaprenyl-phosphate carrier lipid, and (3) the periplasm where the assembly of the macromolecule takes place. Antibiotics involved in the different steps of murein biosynthesis are described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abraham EP (1981) A short history of the beta-lactam antibiotics. In: Mitsuhashi S (ed) Beta-lactam antibiotics. Japan Scientific Press and Springer, Tokyo and Berlin, pp 3–11

    Google Scholar 

  • Abraham EP, Chain EB (1940) Enzymes from bacteria able to destroy penicillin. Nature (London) 146:837

    CAS  Google Scholar 

  • Alborn WE Jr, Allen NE, Preston DA (1991) Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrob Agents Chemother 35:2282–2287

    CAS  PubMed  Google Scholar 

  • Allen NE, Alborn WE Jr, Hobbs JN Jr (1991) Inhibition of membrane potential-dependent amino acid transport by daptomycin. Antimicrob Agents Chemother 35:2639–2642

    CAS  PubMed  Google Scholar 

  • Aretz W, Meiwes J, Seibert G, Vobis G, Wink J (2000) Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing microorganism and fermentation. J Antibiot (Tokyo) 53:807–815

    CAS  Google Scholar 

  • Baltz RH, Miao V, Wrigley SK (2005) Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat Prod Rep 22:717–741

    CAS  PubMed  Google Scholar 

  • Banerjee DK (1989) Amphomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J Biol Chem 264:2024–2028

    CAS  PubMed  Google Scholar 

  • Barna JC, Williams DH (1984) The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annu Rev Microbiol 38:339–357

    CAS  PubMed  Google Scholar 

  • Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207

    CAS  PubMed  Google Scholar 

  • Batchelor FR, Doyle FP, Nayler JH, Rolinson GN (1959) Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183:257–258

    CAS  PubMed  Google Scholar 

  • Bellais S, Arthur M, Dubost L, Hugonnet JE, Gutmann L, van Heijenoort J, Legrand R, Brouard JP, Rice L, Mainardi JL (2006) Aslfm, the d-aspartate ligase responsible for the addition of d-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. J Biol Chem 281:11586–11594

    CAS  PubMed  Google Scholar 

  • Berger-Bächi B, Tschierske M (1998) Role of fem factors in methicillin resistance. Drug Resist Updat 1:325–335

    PubMed  Google Scholar 

  • Berger-Bächi B, Barberis-Maino L, Strassle A, Kayser FH (1989) FemA, a host-mediated factor essential for methicillin resistance in Staphylococcus aureus: molecular cloning and characterization. Mol Gen Genet 219:263–269

    PubMed  Google Scholar 

  • Bernard R, El Ghachi M, Mengin-Lecreulx D, Chippaux M, Denizot F (2005) BcrC from Bacillus subtilis acts as an undecaprenyl pyrophosphate phosphatase in bacitracin resistance. J Biol Chem 280:28852–28857

    CAS  PubMed  Google Scholar 

  • Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189:8636–8642

    CAS  PubMed  Google Scholar 

  • Bernat BA, Laughlin LT, Armstrong RN (1997) Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36:3050–3055

    CAS  PubMed  Google Scholar 

  • Boojamra CG, Lemoine RC, Lee JC, Leger R, Stein KA, Vernier NG, Magon A, Lomovskaya O, Martin PK, Chamberland S, Lee MD, Hecker SJ, Lee VJ (2001) Stereochemical elucidation and total synthesis of dihydropacidamycin D, a semisynthetic pacidamycin. J Am Chem Soc 123:870–874

    CAS  PubMed  Google Scholar 

  • Bouhss A, Trunkfield AE, Bugg TD, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32:208–233

    CAS  PubMed  Google Scholar 

  • Brandish PE, Kimura KI, Inukai M, Southgate R, Lonsdale JT, Bugg TD (1996) Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob Agents Chemother 40:1640–1644

    CAS  PubMed  Google Scholar 

  • Braun V, Patzer SI, Hantke K (2002) Ton-dependent colicins and microcins: modular design and evolution. Biochimie (Paris) 84:365–380

    CAS  Google Scholar 

  • Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5:321–332

    CAS  PubMed  Google Scholar 

  • Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:2361–2364

    CAS  PubMed  Google Scholar 

  • Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG (1998) The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother 42:154–160

    PubMed  Google Scholar 

  • Bugg TD, Lloyd AJ, Roper DI (2006) Phospho-MurNAc-pentapeptide translocase (MraY) as a target for antibacterial agents and antibacterial proteins. Infect Disord Drug Targets 6:85–106

    CAS  PubMed  Google Scholar 

  • Bush K, Jacoby GA, Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211–1233

    CAS  PubMed  Google Scholar 

  • Bush K, Heep M, Macielag MJ, Noel GJ (2007) Anti-MRSA beta-lactams in development, with a focus on ceftobiprole: the first anti-MRSA beta-lactam to demonstrate clinical efficacy. Expert Opin Investig Drugs 16:419–429

    CAS  PubMed  Google Scholar 

  • Butaye P, Devriese LA, Haesebrouck F (2001) Differences in antibiotic resistance patterns of Enterococcus faecalis and Enterococcus faecium strains isolated from farm and pet animals. Antimicrob Agents Chemother 45:1374–1378

    CAS  PubMed  Google Scholar 

  • Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG (1997) Overexpression of the d-alanine racemase gene confers resistance to d-cycloserine in Mycobacterium smegmatis. J Bacteriol 179:5046–5055

    CAS  PubMed  Google Scholar 

  • Cao M, Bernat BA, Wang Z, Armstrong N, Helmann JD (2001) FosB, a cysteine-dependent fosfomycin resistance protein under the control of sigma(W), an extracytoplasmic-function sigma factor in Bacillus subtilis. J Bacteriol 183:2380–2383

    CAS  PubMed  Google Scholar 

  • Cavalleri B, Pagani H, Volpe G, Selva E, Parenti F (1984) A-16686, a new antibiotic from Actinoplanes. I. Fermentation, isolation and preliminary physico-chemical characteristics. J Antibiot (Tokyo) 37:309–317

    CAS  Google Scholar 

  • Chain E, Florey HW, Gardner HW, Heatley NG, Jennings MA, Orr-Erwing J et al (1940) Penicillin as a chemotherapeutic agent. Lancet 2:226–228

    Google Scholar 

  • Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, Kogler H (1992) Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization. J Antibiot (Tokyo) 45:832–838

    CAS  Google Scholar 

  • Chatterjee C, Paul M, **e L, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–684

    CAS  PubMed  Google Scholar 

  • Chemama M, Fonvielle M, Villet R, Arthur M, Valery JM, Etheve-Quelquejeu M (2007) Stable analogues of aminoacyl-tRNA for inhibition of an essential step of bacterial cell wall synthesis. J Am Chem Soc 129:12642–12643

    CAS  PubMed  Google Scholar 

  • Chen L, Walker D, Sun B, Hu Y, Walker S, Kahne D (2003) Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc Natl Acad Sci USA 100:5658–5663

    CAS  PubMed  Google Scholar 

  • Christensen BG, Leanza WJ, Beattie TR, Patchett AA, Arison BH, Ormond RE, Kuehl FA Jr, bers-Schonberg G, Jardetzky O (1969) Phosphonomycin: structure and synthesis. Science 166:123–125

    CAS  PubMed  Google Scholar 

  • Cotroneo N, Harris R, Perlmutter N, Beveridge T, Silverman JA (2008) Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus. Antimicrob Agents Chemother 52:2223–2225

    CAS  PubMed  Google Scholar 

  • Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34

    CAS  PubMed  Google Scholar 

  • Cressina E, Lloyd AJ, De Pascale G, Roper DI, Dowson CG, Bugg TD (2007) Adenosine phosphonate inhibitors of lipid II: alanyl tRNA ligase MurM from Streptococcus pneumoniae. Bioorg Med Chem Lett 17:4654–4656

    CAS  PubMed  Google Scholar 

  • Cudic P, Behenna DC, Kranz JK, Kruger RG, Wand AJ, Veklich YI, Weisel JW, McCafferty DG (2002a) Functional analysis of the lipoglycodepsipeptide antibiotic ramoplanin. Chem Biol 9:897–906

    CAS  PubMed  Google Scholar 

  • Cudic P, Kranz JK, Behenna DC, Kruger RG, Tadesse H, Wand AJ, Veklich YI, Weisel JW, McCafferty DG (2002b) Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation. Proc Natl Acad Sci USA 99:7384–7389

    CAS  PubMed  Google Scholar 

  • David HL (1971) Resistance to d-cycloserine in the tubercle bacilli: mutation rate and transport of alanine in parental cells and drug-resistant mutants. Appl Microbiol 21:888–892

    CAS  PubMed  Google Scholar 

  • David HL, Takayama K, Goldman DS (1969) Susceptibility of mycobacterial d-alanyl-d-alanine synthetase to d-cycloserine. Am Rev Respir Dis 100:579–581

    CAS  PubMed  Google Scholar 

  • David HL, Rastogi N, Clavel-Sérès S, Clément F (1988) Alterations in the outer wall architecture caused by the inhibition of mycoside C biosynthesis in Mycobacterium avium. Curr Microbiol 17:61–68

    CAS  Google Scholar 

  • De Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB (1999) Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145(Pt 11):3177–3184

    PubMed  Google Scholar 

  • Debono M, Barnhart M, Carrell CB, Hoffmann JA, Occolowitz JL, Abbott BJ, Fukuda DS, Hamill RL, Biemann K, Herlihy WC (1987) A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J Antibiot (Tokyo) 40:761–777

    CAS  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202

    CAS  PubMed  Google Scholar 

  • Denapaite D, Chi F, Maurer P, Nolte O, Hakenbeck R (2007) Mechanism of penicillin resistance in Streptococcus pneumoniae: targets, gene transfer, and mutations. In: Hakenbeck R, Chhatwal GS (eds) Molecular biology of Streptococci. Horizon Bioscience, Wymondham, Norfolk UK, pp 290–303

    Google Scholar 

  • Dini C (2005) MraY inhibitors as novel antibacterial agents. Curr Top Med Chem 5:1221–1236

    CAS  PubMed  Google Scholar 

  • Dini C, Collette P, Drochon N, Guillot JC, Lemoine G, Mauvais P, Aszodi J (2000) Synthesis of the nucleoside moiety of liposidomycins: elucidation of the pharmacophore of this family of MraY inhibitors. Bioorg Med Chem Lett 10:1839–1843

    CAS  PubMed  Google Scholar 

  • Dini C, Didier-Laurent S, Drochon N, Feteanu S, Guillot JC, Monti F, Uridat E, Zhang J, Aszodi J (2002) Synthesis of sub-micromolar inhibitors of MraY by exploring the region originally occupied by the diazepanone ring in the liposidomycin structure. Bioorg Med Chem Lett 12:1209–1213

    CAS  PubMed  Google Scholar 

  • Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, Wallis NG (2000) Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in gram-positive bacteria. J Bacteriol 182:4146–4152

    CAS  PubMed  Google Scholar 

  • El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D (2004) The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113

    CAS  PubMed  Google Scholar 

  • El Ghachi M, Bouhss A, Barreteau H, Touze T, Auger G, Blanot D, Mengin-Lecreulx D (2006) Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J Biol Chem 281:22761–22772

    CAS  PubMed  Google Scholar 

  • Etienne J, Gerbaud G, Courvalin P, Fleurette J (1989) Plasmid-mediated resistance to fosfomycin in Staphylococcus epidermidis. FEMS Microbiol Lett 52:133–137

    CAS  PubMed  Google Scholar 

  • Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI (2008) Fosfomycin: use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 46:1069–1077

    PubMed  Google Scholar 

  • Fang X, Tiyanont K, Zhang Y, Wanner J, Boger D, Walker S (2006) The mechanism of action of ramoplanin and enduracidin. Mol Biosyst 2:69–76

    CAS  PubMed  Google Scholar 

  • Feng Z, Barletta RG (2003) Roles of Mycobacterium smegmatis d-alanine:d-alanine ligase and d-alanine racemase in the mechanisms of action of and resistance to the peptidoglycan inhibitor d-cycloserine. Antimicrob Agents Chemother 47:283–291

    CAS  PubMed  Google Scholar 

  • Fernandes PB, Swanson RN, Hardy DJ, Hanson CW, Coen L, Rasmussen RR, Chen RH (1989) Pacidamycins, a novel series of antibiotics with anti-Pseudomonas aeruginosa activity. III. Microbiologic profile. J Antibiot (Tokyo) 42:521–526

    CAS  Google Scholar 

  • Fillgrove KL, Pakhomova S, Schaab MR, Newcomer ME, Armstrong RN (2007) Structure and mechanism of the genomically encoded fosfomycin resistance protein, FosX, from Listeria monocytogenes. Biochemistry 46:8110–8120

    CAS  PubMed  Google Scholar 

  • Fleming A (1929) J Exp Pathol 10:226–236

    CAS  Google Scholar 

  • Gardam MA (2000) Is methicillin-resistant Staphylococcus aureus an emerging community pathogen? A review of the literature. Can J Infect Dis 11:202–211

    CAS  PubMed  Google Scholar 

  • Ghuysen J-M (1991) Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45:37–67

    CAS  PubMed  Google Scholar 

  • Goffin C, Ghuysen J-M (2002) Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66:706–738

    Google Scholar 

  • Goldman RC, Gange D (2000) Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. Curr Med Chem 7:801–820

    CAS  PubMed  Google Scholar 

  • Gotoh N, Murata T, Ozaki T, Kimura T, Kondo A, Nishino T (2003) Intrinsic resistance of Escherichia coli to mureidomycin A and C due to expression of the multidrug efflux system AcrAB-TolC: comparison with the efflux systems of mureidomycin-susceptible Pseudomonas aeruginosa. J Infect Chemother 9:101–103

    PubMed  Google Scholar 

  • Green DW (2002) The bacterial cell wall as a source of antibacterial targets. Expert Opin Ther Targets 6:1–19

    CAS  PubMed  Google Scholar 

  • Grundy WE, Sinclair AC, Theriault RJ, Goldstein AW, Rickcher CJ, Warren Jr HB, OliverTJ, Sylvester JC (1957) Ristocetin, microbiologic properties. Antibiot Annu 1956–1957:687–692

    Google Scholar 

  • Hakenbeck R, Tornette S, Adkinson NF (1987) Interaction of non-lytic β-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol 133:755–760

    CAS  PubMed  Google Scholar 

  • Halliday J, McKeveney D, Muldoon C, Rajaratnam P, Meutermans W (2006) Targeting the forgotten transglycosylases. Biochem Pharmacol 71:957–967

    CAS  PubMed  Google Scholar 

  • Harkness RE, Braun V (1989a) Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling. J Biol Chem 264:6177–6182

    CAS  PubMed  Google Scholar 

  • Harkness RE, Braun V (1989b) Inhibition of lipopolysaccharide O-antigen synthesis by colicin M. J Biol Chem 264:14716–14722

    CAS  PubMed  Google Scholar 

  • Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313:1636–1637

    CAS  PubMed  Google Scholar 

  • He H (2005) Mannopeptimycins, a novel class of glycopeptide antibiotics activeagainst gram-positive bacteria. Appl Microbiol Biotechnol 67:444–452

    CAS  PubMed  Google Scholar 

  • He H, Williamson RT, Shen B, Graziani EI, Yang HY, Sakya SM, Petersen PJ, Carter GT (2002) Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J Am Chem Soc 124:9729–9736

    CAS  PubMed  Google Scholar 

  • Hechard Y, Sahl HG (2002) Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557

    CAS  PubMed  Google Scholar 

  • Heifetz A, Keenan RW, Elbein AD (1979) Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry 18:2186–2192

    CAS  PubMed  Google Scholar 

  • Heinemann B, Kaplan MA, Muir RD, Hooper IR (1953) Amphomycin, a new antibiotic. Antibiotic Chemother 3:1239–1242

    CAS  Google Scholar 

  • Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller TW, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S (1969) Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science 166:122–123

    CAS  PubMed  Google Scholar 

  • Herve M, Boniface A, Gobec S, Blanot D, Mengin-Lecreulx D (2007) Biochemical characterization and physiological properties of Escherichia coli UDP-N-acetylmuramate:l-alanyl-gamma-d-glutamyl-meso-diaminopimelate ligase. J Bacteriol 189:3987–3995

    CAS  PubMed  Google Scholar 

  • Hofmann SG, Pollack MH, Otto MW (2006) Augmentation treatment of psychotherapy for anxiety disorders with d-cycloserine. CNS Drug Rev 12:208–217

    CAS  PubMed  Google Scholar 

  • Höltje JV, Mirelman D, Sharon N, Schwarz U (1975) Novel type of murein transglycosylase in Escherichia coli. J Bacteriol 124:1067–1076

    PubMed  Google Scholar 

  • Howard NI, Bugg TD (2003) Synthesis and activity of 5′-uridinyl dipeptide analogues mimicking the amino terminal peptide chain of nucleoside antibiotic mureidomycin A. Bioorg Med Chem 11:3083–3099

    CAS  PubMed  Google Scholar 

  • Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijff B, Kaptein R, Bonvin AM, van Nuland NA (2004) The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11:963–967

    CAS  PubMed  Google Scholar 

  • Huber G (1979) Moenomycins. In: Hahn FE (ed) Antibiotic V/I. Mechanism of action of antibacterial agents. Springer, Berlin, pp 135–153

    Google Scholar 

  • Hullmann J, Patzer SI, Romer C, Hantke K, Braun V (2008) Periplasmic chaperone FkpA is essential for imported colicin M toxicity. Mol Microbiol 69:926–937

    CAS  PubMed  Google Scholar 

  • Imada A, Kintaka K, Nakao M, Shinagawa S (1982) Bulgecin, a bacterial metabolite which in concert with beta-lactam antibiotics causes bulge formation. J Antibiot (Tokyo) 35:1400–1403

    CAS  Google Scholar 

  • Inukai M, Isono F, Takahashi S, Enokita R, Sakaida Y, Haneishi T (1989) Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. I. Taxonomy, fermentation, isolation and physico-chemical properties. J Antibiot (Tokyo) 42:662–666

    CAS  Google Scholar 

  • Inukai M, Isono F, Takatsuki A (1993) Selective inhibition of the bacterial translocase reaction in peptidoglycan synthesis by mureidomycins. Antimicrob Agents Chemother 37:980–983

    CAS  PubMed  Google Scholar 

  • Isono F, Inukai M (1991) Mureidomycin A, a new inhibitor of bacterial peptidoglycan synthesis. Antimicrob Agents Chemother 35:234–236

    CAS  PubMed  Google Scholar 

  • Isono K, Uramoto M, Kusakabe H, Kimura K, Isaki K, Nelson CC, McCloskey JA (1985) Liposidomycins: novel nucleoside antibiotics which inhibit bacterial peptidoglycan synthesis. J Antibiot (Tokyo) 38:1617–1621

    CAS  Google Scholar 

  • Isono F, Inukai M, Takahashi S, Haneishi T, Kinoshita T, Kuwano H (1989a) Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. II. Structural elucidation. J Antibiot (Tokyo) 42:667–673

    CAS  Google Scholar 

  • Isono F, Katayama T, Inukai M, Haneishi T (1989b) Mureidomycins A-D, novel peptidylnucleoside antibiotics with spheroplast forming activity. III. Biological properties. J Antibiot (Tokyo) 42:674–679

    CAS  Google Scholar 

  • Isono F, Kodama K, Inukai M (1992) Susceptibility of Pseudomonas species to the novel antibiotics mureidomycins. Antimicrob Agents Chemother 36:1024–1027

    CAS  PubMed  Google Scholar 

  • Johnson BA, Anker H, Meleney FL (1945) Bacitracin: a new antibiotic produced by a member of the B. subtilis group. Science 102:376–377

    CAS  PubMed  Google Scholar 

  • Johnson R, Streicher EM, Louw GE, Warren RM, van Helden PD, Victor TC (2006) Drug resistance in Mycobacterium tuberculosis. Curr Issues Mol Biol 8:97–111

    CAS  PubMed  Google Scholar 

  • Jones RN (2006) Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. Clin Infect Dis 42(Suppl 1):S13–S24

    CAS  PubMed  Google Scholar 

  • Kadner RJ, Winkler HH (1973) Isolation and characterization of mutations affecting the transport of hexose phosphates in Escherichia coli. J Bacteriol 113:895–900

    CAS  PubMed  Google Scholar 

  • Kahan FM, Kahan JS, Cassidy PJ, Kropp H (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci 235:364–386

    CAS  PubMed  Google Scholar 

  • Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J (1979) Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo) 32:1–12

    CAS  Google Scholar 

  • Kimura K, Bugg TD (2003) Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat Prod Rep 20:252–273

    CAS  PubMed  Google Scholar 

  • Kimura K, Ikeda Y, Kagami S, Yoshihama M, Suzuki K, Osada H, Isono K (1998) Selective inhibition of the bacterial peptidoglycan biosynthesis by the new types of liposidomycins. J Antibiot (Tokyo) 51:1099–1104

    CAS  Google Scholar 

  • Klare I, Konstabel C, Badstubner D, Werner G, Witte W (2003) Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88:269–290

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Kuzuyama T, Seto H (2000) Characterization of the fomA and fomB gene products from Streptomyces wedmorensis, which confer fosfomycin resistance on Escherichia coli. Antimicrob Agents Chemother 44:647–650

    CAS  PubMed  Google Scholar 

  • Kramer NE, Smid EJ, Kok J, de Kruijff B, Kuipers OP, Breukink E (2004) Resistance of Gram-positive bacteria to nisin is not determined by lipid II levels. FEMS Microbiol Lett 239:157–161

    CAS  PubMed  Google Scholar 

  • Kramer NE, Hasper HE, van den Bogaard PT, Morath S, de Kruijff B, Hartung T, Smid EJ, Breukink E, Kok J, Kuipers OP (2008) Increased d-alanylation of lipoteichoic acid and a thickened septum are main determinants in the nisin resistance mechanism of Lactococcus lactis. Microbiology 154:1755–1762

    CAS  PubMed  Google Scholar 

  • Lambert MP, Neuhaus FC (1972) Mechanism of d-cycloserine action: alanine racemase from Escherichia coli W. J Bacteriol 110:978–987

    CAS  PubMed  Google Scholar 

  • Linnett PE, Strominger JL (1973) Additional antibiotic inhibitors of peptidoglycan synthesis. Antimicrob Agents Chemother 4:231–236

    CAS  PubMed  Google Scholar 

  • Livermore DM (2008) Defining an extended-spectrum beta-lactamase. Clin Microbiol Infect 14(Suppl 1):3–10

    CAS  PubMed  Google Scholar 

  • Lovering AL, de Castro LH, Lim D, Strynadka NC (2007) Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science 315:1402–1405

    CAS  PubMed  Google Scholar 

  • Lugtenberg EJJ, van Schijndel-van Dam A, van Bellegem THM (1971) In vivo and in vitro action of new antibiotics interfering with the utilization of N-acetyl-glucosamine-N-acetyl-muramyl-pentapeptide. J Bacteriol 108:20–29

    CAS  PubMed  Google Scholar 

  • Magnet S, Arbeloa A, Mainardi JL, Hugonnet JE, Fourgeaud M, Dubost L, Marie A, Delfosse V, Mayer C, Rice LB, Arthur M (2007a) Specificity of l, d-transpeptidases from gram-positive bacteria producing different peptidoglycan chemotypes. J Biol Chem 282:13151–13159

    CAS  PubMed  Google Scholar 

  • Magnet S, Bellais S, Dubost L, Fourgeaud M, Mainardi JL, Petit-Frere S, Marie A, Mengin-Lecreulx D, Arthur M, Gutmann L (2007b) Identification of the l, d-transpeptidases responsible for attachment of the Braun lipoprotein to Escherichia coli peptidoglycan. J Bacteriol 189:3927–3931

    CAS  PubMed  Google Scholar 

  • Mahapatra S, Scherman H, Brennan PJ, Crick DC (2005) N Glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J Bacteriol 187:2341–2347

    CAS  PubMed  Google Scholar 

  • Mainardi JL, Hugonnet JE, Rusconi F, Fourgeaud M, Dubost L, Moumi AN, Delfosse V, Mayer C, Gutmann L, Rice LB, Arthur M (2007) Unexpected inhibition of peptidoglycan LD-transpeptidase from Enterococcus faecium by the beta-lactam imipenem. J Biol Chem 282:30414–30422

    CAS  PubMed  Google Scholar 

  • Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M (2008) Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 32:386–408

    CAS  PubMed  Google Scholar 

  • Marquardt JL, Siegele DA, Kolter R, Walsh CT (1992) Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174:5748–5752

    CAS  PubMed  Google Scholar 

  • Matsuhashi M, Dietrich CP, Strominger JL (1965) Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci USA 54:587–594

    CAS  PubMed  Google Scholar 

  • Matsuhashi M, Ishino F, Nakagawa J, Mitsui K, Nakajima-Iijima S, Tamaki S (1984) Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J Biol Chem 259:13937–13946

    PubMed  Google Scholar 

  • Maurer P, Koch B, Zerfaß I, Krauß J, van der Linden M, Frère J-M, Contreras-Martel C, Hakenbeck R (2008) Penicillin-binding protein 2x of Streptococcus pneumoniae: Three new mutational pathways for remodelling an essential enzyme into a resistance determinant. J Mol Biol 376:1403–1416

    CAS  PubMed  Google Scholar 

  • Mazzotta AS, Montville TJ (1999) Characterization of fatty acid composition, spore germination, and thermal resistance in a nisin-resistant mutant of Clostridium botulinum 169B and in the wild-type strain. Appl Environ Microbiol 65:659–664

    CAS  PubMed  Google Scholar 

  • McCafferty DG, Cudic P, Frankel BA, Barkallah S, Kruger RG, Li W (2002) Chemistry and biology of the ramoplanin family of peptide antibiotics. Biopolymers 66:261–284

    CAS  PubMed  Google Scholar 

  • McCormick MH, McGuire JM, Pittenger GE, Pittenger RC, Stark WM (1956) Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Annu 1955–1956:606–611

    Google Scholar 

  • McCoy AJ, Maurelli AT (2005) Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting d-alanyl-d-alanine ligase activity involved in peptidoglycan synthesis and d-cycloserine sensitivity. Mol Microbiol 57:41–52

    CAS  PubMed  Google Scholar 

  • McDonald LA, Barbieri LR, Carter GT, Lenoy E, Lovin J, Petersen PJ, Siege MM, Singh G, Williamson RT (2002) Structures of the muraymycins, novel peptidoglycan biosynthesis inhibitors. J Am Chem Soc 124:10260–10261

    CAS  PubMed  Google Scholar 

  • Mendoza C, Garcia JM, Llaneza J, Mendez FJ, Hardisson C, Ortiz JM (1980) Plasmid-determined resistance to fosfomycin in Serratia marcescens. Antimicrob Agents Chemother 18:215–219

    CAS  PubMed  Google Scholar 

  • Mengin-Lecreulx D, van Heijenoort J, Park JT (1996) Identification of the mpl gene enco ding UDP-N-acetylmuramate: l-alanyl-gamma-d-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol 178:5347–5352

    CAS  PubMed  Google Scholar 

  • Milligan DL, Tran SL, Strych U, Cook GM, Krause KL (2007) The alanine racemase of Mycobacterium smegmatis is essential for growth in the absence of d-alanine. J Bacteriol 189:8381–8386

    CAS  PubMed  Google Scholar 

  • Mitsuhashi S (1981) Beta-Lactam Antibiotics. Japan Scientific Societies Press and Springer, Tokyo and Berlin

    Google Scholar 

  • Molinari H, Pastore A, Lian LY, Hawkes GE, Sales K (1990) Structure of vancomycin and a vancomycin/d-Ala-d-Ala complex in solution. Biochemistry 29:2271–2277

    CAS  PubMed  Google Scholar 

  • Morin RB, Jackson BG, Flynn EH, Roeske RW (1962) Chemistry of cephalosporin antibiotics. 1. 7-Aminocephalosporanic acid. J Am Chem Soc 84:3400–3401

    CAS  Google Scholar 

  • Müller C, Nolden S, Gebhardt P, Heinzelmann E, Lange C, Puk O, Welzel K, Wohlleben W, Schwartz D (2007) Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic Friulimicin in Actinoplanes friuliensis. Antimicrob Agents Chemother 51:1028–1037

    PubMed  Google Scholar 

  • Muramatsu Y, Ishii MM, Inukai M (2003) Studies on novel bacterial translocase I inhibitors, A-500359s. II. Biological activities of A-500359 A, C, D, and G. J Antibiot (Tokyo) 56:253-258

    CAS  Google Scholar 

  • Muroi M, Kimura K, Osada H, Inukai M, Takatsuki A (1997) Liposidomycin B inhibits in vitro formation of polyprenyl (pyro)phosphate N-acetylglucosamine, an intermediate in glycoconjugate biosynthesis. J Antibiot (Tokyo) 50:103–104

    CAS  Google Scholar 

  • Nakaminami H, Noguchi N, Nishijima S, Kurokawa I, Sasatsu M (2008) Characterization of the pTZ2162 encoding multidrug efflux gene qacB from Staphylococcus aureus. Plasmid 60:108–117

    CAS  PubMed  Google Scholar 

  • Neuhaus FC (1967) d-cycloserine and O-carbamyl-d-serine. In: Gottlieb D, Shaw PD (eds) Antibiotics: mechanism of action. Springer, New York, pp 40–83

    Google Scholar 

  • Newton GGF, Abraham EP (1956) Isolation of cephalosporin C, a penicillin-like antibiotic containing d-a-aminoadipic acid. Biochem J 62:651–658

    CAS  PubMed  Google Scholar 

  • Nikaido H (1989) Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33:1831–1836

    CAS  PubMed  Google Scholar 

  • Nikaido H, Rosenberg EY (1983) Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 153:241–252

    CAS  PubMed  Google Scholar 

  • Noble WC, Virani Z, Cree RG (1992) Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett 72:195–198

    CAS  PubMed  Google Scholar 

  • Noda Y, Yoda K, Takatsuki A, Yamasaki M (1992) TmrB protein, responsible for tunicamycin resistance of Bacillus subtilis, is a novel ATP-binding membrane protein. J Bacteriol 174:4302–4307

    CAS  PubMed  Google Scholar 

  • Noda Y, Takatsuki A, Yoda K, Yamasaki M (1995) TmrB protein, which confers resistance to tunicamycin on Bacillus subtilis, binds tunicamycin. Biosci Biotechnol Biochem 59:321–322

    CAS  PubMed  Google Scholar 

  • Nordmann P, Naas T, Fortineau N, Poirel L (2007) Superbugs in the coming new decade; multidrug resistance and prospects for treatment of Staphylococcus aureus, Enterococcus spp. and Pseudomonas aeruginosa in 2010. Curr Opin Microbiol 10:436–440

    CAS  PubMed  Google Scholar 

  • O’Hara K (1993) Two different types of fosfomycin resistance in clinical isolates of Klebsiella pneumoniae. FEMS Microbiol Lett 114:9–16

    PubMed  Google Scholar 

  • Ohki R, Tateno K, Okada Y, Okajima H, Asai K, Sadaie Y, Murata M, Aiso T (2003) A bacitracin-resistant Bacillus subtilis gene encodes a homologue of the membrane-spanning subunit of the Bacillus licheniformis ABC transporter. J Bacteriol 185:51–59

    CAS  PubMed  Google Scholar 

  • Ostash B, Saghatelian A, Walker S (2007) A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14:257–267

    CAS  PubMed  Google Scholar 

  • Paik J, Kern I, Lurz R, Hakenbeck R (1999) Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J Bacteriol 181:3852–3856

    CAS  PubMed  Google Scholar 

  • Parenti F (1986) Structure and mechanism of action of teicoplanin. J Hosp Infect 7(Suppl A):79–83

    PubMed  Google Scholar 

  • Parenti F, Beretta G, Berti M, Arioli V (1978) Teichomycins, new antibiotics from Actinoplanes teichomyceticus Nov. Sp. I. Description of the producer strain, fermentation studies and biological properties. J Antibiot (Tokyo) 31:276–283

    CAS  Google Scholar 

  • Parenti F, Ciabatti R, Cavalleri B, Kettenring J (1990) Ramoplanin: a review of its discovery and its chemistry. Drugs Exp Clin Res 16:451–455

    CAS  PubMed  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410

    CAS  PubMed  Google Scholar 

  • Peteroy M, Severin A, Zhao F, Rosner D, Lopatin U, Scherman H, Belanger A, Harvey B, Hatfull GF, Brennan PJ, Connell ND (2000) Characterization of a Mycobacterium smegmatis mutant that is simultaneously resistant to d-cycloserine and vancomycin. Antimicrob Agents Chemother 44:1701–1704

    CAS  PubMed  Google Scholar 

  • Pitkanen M, Sirvio J, MacDonald E, Ekonsalo T, Riekkinen P Sr (1995) The effects of d-cycloserine, a partial agonist at the glycine binding site, on spatial learning and working memory in scopolamine-treated rats. J Neural Transm Park Dis Dement Sect 9:133–144

    CAS  PubMed  Google Scholar 

  • Plapp R, Strominger JL (1970) Biosynthesis of the peptidoglycan of bacterial cell walls. XVII. Biosynthesis of peptidoglycan and of interpeptide bridges in Lactobacillus viridescens. J Biol Chem 245:3667–3674

    CAS  Google Scholar 

  • Podlesek Z, Comino A, Herzog-Velikonja B, Zgur-Bertok D, Komel R, Grabnar M (1995) Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol 16:969–976

    CAS  PubMed  Google Scholar 

  • Queenan AM, Bush K (2007) Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev 20:440–458

    CAS  PubMed  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950

    CAS  PubMed  Google Scholar 

  • Rietkötter E, Hoyer D, Mascher T (2008) Bacitracin sensing in Bacillus subtilis. Mol Microbiol 68:768–785

    PubMed  Google Scholar 

  • Rife CL, Pharris RE, Newcomer ME, Armstrong RN (2002) Crystal structure of a genomically encoded fosfomycin resistance protein (FosA) at 1.19 A resolution by MAD phasing off the L-III edge of Tl(+). J Am Chem Soc 124:11001–11003

    CAS  PubMed  Google Scholar 

  • Rogers LA (1928) The inhibiting effect of Streptococcus lactis on Lactobacillus bulgaricus. J Bacteriol 16:321–325

    CAS  PubMed  Google Scholar 

  • Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman & Hall Ltd, London, United Kingdom

    Google Scholar 

  • Rolinson GN (1998) Forty years of β-lactam research. J Antimicrob Chemother 41:589–603

    CAS  PubMed  Google Scholar 

  • Russell RR (1972) Map** of a d-cycloserine resistance locus in Escherichia coli K-12. J Bacteriol 111:622–624

    CAS  PubMed  Google Scholar 

  • Ruzin A, Singh G, Severin A, Yang Y, Dushin RG, Sutherland AG, Minnick A, Greenstein M, May MK, Shlaes DM, Bradford PA (2004) Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob Agents Chemother 48:728–738

    CAS  PubMed  Google Scholar 

  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    CAS  PubMed  Google Scholar 

  • Schaller K, Holtje JV, Braun V (1982) Colicin M is an inhibitor of murein biosynthesis. J Bacteriol 152:994–1000

    CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    CAS  PubMed  Google Scholar 

  • Sheldrick GM, Jones PG, Kennard O, Williams DH, Smith GA (1978) Structure of vancomycin and its complex with acetyl-d-alanyl-d-alanine. Nature 271:223–225

    CAS  PubMed  Google Scholar 

  • Shinagawa S, Maki M, Kintaka K, Imada A, Asai M (1985) Isolation and characterization of bulgecins, new bacterial metabolites with bulge-inducing activity. J Antibiot (Tokyo) 38:17–23

    CAS  Google Scholar 

  • Siewert G, Strominger JL (1967) Bacitracin: an inhibitor of the dephosphorylation of lipid pyrophosphate, an intermediate in the biosynthesis of the peptidolgycan of bacterial cell walls. Proc Natl Acad Sci USA 57:767–773

    CAS  PubMed  Google Scholar 

  • Silverman JA, Perlmutter NG, Shapiro HM (2003) Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother 47:2538–2544

    CAS  PubMed  Google Scholar 

  • Singh MP, Petersen PJ, Weiss WJ, Janso JE, Luckman SW, Lenoy EB, Bradford PA, Testa RT, Greenstein M (2003) Mannopeptimycins, new cyclic glycopeptide antibiotics produced by Streptomyces hygroscopicus LL-AC98: antibacterial and mechanistic activities. Antimicrob Agents Chemother 47:62–69

    CAS  PubMed  Google Scholar 

  • Spratt BG, Pardee AB (1975) Penicillin-binding proteins and cell shape in E. coli. Nature 254:516–517

    CAS  PubMed  Google Scholar 

  • Spratt BG, Zhou J, Taylor M, Merrick MJ (1996) Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Microbiol 19:639–640

    CAS  PubMed  Google Scholar 

  • Stachyra T, Dini C, Ferrari P, Bouhss A, van Heijenoort J, Mengin-Lecreulx D, Blanot D, Biton J, Le Beller D (2004) Fluorescence detection-based functional assay for high-throughput screening for MraY. Antimicrob Agents Chemother 48:897–902

    CAS  PubMed  Google Scholar 

  • Staudenbauer W, Strominger JL (1972) Activation of d-aspartic acid for incorporation into peptidoglycan. J Biol Chem 247:5095–5102

    CAS  PubMed  Google Scholar 

  • Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin: complexation with metal ion and C 55 -isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68:3223–3227

    CAS  PubMed  Google Scholar 

  • Strynadka NC, Jensen SE, Johns K, Blanchard H, Page M, Matagne A, Frere JM, James MN (1994) Structural and kinetic characterization of a beta-lactamase-inhibitor protein. Nature 368:657–660

    CAS  PubMed  Google Scholar 

  • Strynadka NC, Jensen SE, Alzari PM, James MN (1996) A potent new mode of beta-lactamase inhibition revealed by the 1.7 A X-ray crystallographic structure of the TEM-1-BLIP complex. Nat Struct Biol 3:290–297

    CAS  PubMed  Google Scholar 

  • Sutton BJ, Artymiuk PJ, Cordero-Borboa AE, Little C, Phillips DC, Waley SG (1987) An X-ray-crystallographic study of beta-lactamase II from Bacillus cereus at 0.35 nm resolution. Biochem J 248:181–188

    CAS  PubMed  Google Scholar 

  • Suzuki H, van Heijenoort Y, Tamura T, Mizoguchi J, Hirota Y, van Heijenoort J (1980) In vitro peptidoglycan polymerization catalysed by penicillin-binding protein 1b of Escherichia coli. FEBS Lett 110:245–249

    CAS  PubMed  Google Scholar 

  • Sykes RB, Bonner DP (1985) Discovery and development of the monobactams. Rev Infect Dis 7(Suppl 4):S579–S593

    CAS  PubMed  Google Scholar 

  • Takayama K, David HL, Wang L, Goldman DS (1970) Isolation and characterization of uridine diphosphate-N-glycolylmuramyl-l-alanyl-gamma-d-glutamyl-meso-alpha, alpha′- diaminopimelic acid from Mycobacterium tuberculosis. Biochem Biophys Res Commun 39:7–12

    CAS  PubMed  Google Scholar 

  • Tamura G (1982) Tunicamycins. Japan Scientific Press, Tokyo

    Google Scholar 

  • Tanaka H, Oiwa R, Matsukura S, Inokoshi J, Omura S (1982) Studies on bacterial cell wall inhibitors. X. Properties of phosph-N-acetylmuramoyl-pentapeptide-transferase in peptidoglycan synthesis of Bacillus megaterium and its inhibition by amphomycin. J Antibiot (Tokyo) 35:1216–1221

    CAS  Google Scholar 

  • Taylor JG, Li X, Zhu W, Kahne DE (2006) The total synthesis of moenomycin A. J Am Chem Soc 128:15084–15085

    CAS  PubMed  Google Scholar 

  • Templin MF, Edwards DH, Höltje JV (1992) A murein hydrolase is the specific target of bulgecin in Escherichia coli. J Biol Chem 267:20039–20043

    CAS  PubMed  Google Scholar 

  • Thunnissen AM, Rozeboom HJ, Kalk KH, Dijkstra BW (1995) Structure of the 70-kDa soluble lytic transglycosylase complexed with bulgecin A. Implications for the enzymatic mechanism. Biochemistry 34:12729–12737

    CAS  PubMed  Google Scholar 

  • Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc Natl Acad Sci USA 54:1133–1141

    CAS  PubMed  Google Scholar 

  • Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T (2002) Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46:3756–3764

    CAS  PubMed  Google Scholar 

  • van Asselt EJ, Kalk KH, Dijkstra BW (2000) Crystallographic studies of the interactions of Escherichia coli lytic transglycosylase Slt35 with peptidoglycan. Biochemistry 39:1924–1934

    PubMed  Google Scholar 

  • van Bambeke F, Chauvel M, Reynolds PE, Fraimow HS, Courvalin P (1999) Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother 43:41–47

    PubMed  Google Scholar 

  • van Heijenoort J (2007) Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol Mol Biol Rev 71:620–635

    PubMed  Google Scholar 

  • van Heijenoort Y, van Heijenoort J (1980) Biosynthesis of the peptidoglycn of Escherichia coli K12. Properties of the in vitro polymerization by transglycosylation. FEBS Lett 110:214–244

    Google Scholar 

  • Venkateswaran PS, Wu HC (1972) Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli K-12. J Bacteriol 110:935–944

    CAS  PubMed  Google Scholar 

  • Vinella D, Albrecht C, Cashel M, D’Ari R (2005) Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56:958–970

    CAS  PubMed  Google Scholar 

  • Vollmer W, Blanot D, de Pedro MA (2008a) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32:149–167

    CAS  PubMed  Google Scholar 

  • Vollmer W, Joris B, Charlier P, Foster S (2008b) Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev 32:259–286

    CAS  PubMed  Google Scholar 

  • Vollmerhaus PJ, Breukink E, Heck AJ (2003) Getting closer to the real bacterial cell wall target: biomolecular interactions of water-soluble lipid II with glycopeptide antibiotics. Chemistry 9:1556–1565

    CAS  PubMed  Google Scholar 

  • Walker S, Chen L, Hu Y, Rew Y, Shin D, Boger DL (2005) Chemistry and biology of ramoplanin: a lipoglycodepsipeptide with potent antibiotic activity. Chem Rev 105:449–476

    CAS  PubMed  Google Scholar 

  • Wang J, Palzkill T, Chow DC (2009) Structural insight into the kinetics and DCp of interactions between TEM-1 β-lactamase and β-lactamase inhibitory protein (BLIP). J Biol Chem 284:595–609

    CAS  PubMed  Google Scholar 

  • Ward JM, Hodgson JE (1993) The biosynthetic genes for clavulanic acid and cephamycin production occur as a ‘supercluster’ in three Streptomyces. FEMS Microbiol Lett 110:239–242

    CAS  PubMed  Google Scholar 

  • Wargel RJ, Hadur CA, Neuhaus FC (1971) Mechanism of d-cycloserine action: transport mutants for d-alanine, d-cycloserine, and glycine. J Bacteriol 105:1028–1035

    CAS  PubMed  Google Scholar 

  • Weidel W, Pelzer H (1964) Bad-shaped macromolecules – a new outlook on bacterial cell walls. Adv Enzymol 26:193–232

    PubMed  Google Scholar 

  • Welzel P (2005) Syntheses around the transglycosylation step in peptidoglycan biosynthesis. Chem Rev 105:4610–4660

    CAS  PubMed  Google Scholar 

  • Welzel P (2007) A long research story culminates in the first total synthesis of moenomycin A. Angew Chem Int Ed Engl 46:4825–4829

    CAS  PubMed  Google Scholar 

  • Welzel P, Witteler FJ, Müller D, Riemer W (1981) Structure of the antibiotic moenomycin A. Angew Chem Int Ed Engl 20:121–123

    Google Scholar 

  • Welzel P, Wietfeld B, Kunisch F, Schubert T, Hobert K, Duddeck H, Müller D, Huber G, Maggio JE, Williams DH (1983) Moenomycin A: further structural studies and preparation of simple derivatives. Tetrahedron 39:1583–1591

    CAS  Google Scholar 

  • Werner G, Strommenger B, Witte W (2008) Acquired vancomycin resistance in clinically relevant pathogens. Future Microbiol 3:547–562

    CAS  PubMed  Google Scholar 

  • Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, de Kruijff B, Sahl HG (2001) Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276:1772–1779

    CAS  PubMed  Google Scholar 

  • Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, Sahl HG (2006) The mode of action of the lantibiotic lacticin 3147 – a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol 61:285–296

    CAS  PubMed  Google Scholar 

  • Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. Annu Rev Microbiol 61:477–501

    CAS  PubMed  Google Scholar 

  • Woodyer RD, Shao Z, Thomas PM, Kelleher NL, Blodgett JA, Metcalf WW, van der Donk WA, Zhao H (2006) Heterologous production of fosfomycin and identification of the minimal biosynthetic gene cluster. Chem Biol 13:1171–1182

    CAS  PubMed  Google Scholar 

  • Yuan Y, Fuse S, Ostash B, Sliz P, Kahne D, Walker S (2008) Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol 3:429–436

    CAS  PubMed  Google Scholar 

  • Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385

    CAS  PubMed  Google Scholar 

  • Zeth K, Romer C, Patzer SI, Braun V (2008) Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J Biol Chem 283:25324–25331

    CAS  PubMed  Google Scholar 

  • Zhang Z, Palzkill T (2004) Dissecting the protein-protein interface between beta-lactamase inhibitory protein and class A beta-lactamases. J Biol Chem 279:42860–42866

    CAS  PubMed  Google Scholar 

Download references

Acknowlegement

This work was supported by the EU (Intafar, LSHM-CT-2004-512138) and the Deutsche Forschungsgemeinschaft (Ha1011/11-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Hakenbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hakenbeck, R., Brückner, R., Henrich, B. (2010). Cell Wall Targeted Antibiotics. In: König, H., Claus, H., Varma, A. (eds) Prokaryotic Cell Wall Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05062-6_12

Download citation

Publish with us

Policies and ethics

Navigation