What Can AI Get from Neuroscience?

  • Chapter
50 Years of Artificial Intelligence

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

Abstract

The human brain is the best example of intelligence known, with unsurpassed ability for complex, real-time interaction with a dynamic world. AI researchers trying to imitate its remarkable functionality will benefit by learning more about neuroscience, and the differences between Natural and Artificial Intelligence. Steps that will allow AI researchers to pursue a more brain-inspired approach to AI are presented. A new approach that bridges AI and neuroscience is described, Embodied Cultured Networks. Hybrids of living neural tissue and robots, called hybrots, allow detailed investigation of neural network mechanisms that may inform future AI. The field of neuroscience will also benefit tremendously from advances in AI, to deal with their massive knowledge bases and help understand Natural Intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lazebnik, Y.: Can a biologist fix a radio?—Or, what I learned while studying apoptosis. Cancer Cell 2, 179–182 (2002)

    Article  Google Scholar 

  2. Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., Lamantia, A.S., McNamara, J.O., et al.: Neuroscience, 3rd edn. Sinauer Associates, New York (2004)

    Google Scholar 

  3. Bear, M.F., Connors, B., Paradiso, M.: Neuroscience: Exploring the Brain. Lippincott Williams & Wilkins, New York (2006)

    Google Scholar 

  4. Kandel, E.R., Schwartz, J.H., Jessel, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill Publishing Co., New York (2000)

    Google Scholar 

  5. von Neumann, J.: The Computer and the Brain. Yale University Press, New Haven (1958)

    MATH  Google Scholar 

  6. Tononi, G., Sporns, O., Edelman, G.M.: A Measure for Brain Complexity: Relating Functional Segregation and Integration in the Nervous System. PNAS 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  7. Kosslyn, S.M., Pascual-Leone, A., Felician, O., Camposano, S., Keenan, J.P., Thompson, W.L., et al.: The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284(5411), 167–170 (1999)

    Article  Google Scholar 

  8. Alberini, C.M., Milekic, M.H., Tronel, S.: Mechanisms of memory stabilization and de-stabilization. Cell Mol. Life Sci. 63(9), 999–1008 (2006)

    Article  Google Scholar 

  9. Bell, A.J.: Levels and loops: the future of artificial intelligence and neuroscience. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 354(1392), 2013–2020 (1999)

    Article  Google Scholar 

  10. Buzsaki, G.: Rhythms of the Brain. Oxford U. Press, Oxford (2006)

    MATH  Google Scholar 

  11. Wehr, M., Laurent, G.: Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384(6605), 162–166 (1996)

    Article  Google Scholar 

  12. Yuste, R., Majewska, A.: On the function of dendritic spines. Neuroscientist 7(5), 387–395 (2001)

    Google Scholar 

  13. Liu, S.-C., Kramer, J., Indiveri, G., Delbrück, T., Douglas, R.: Analog VLSI: Circuits and Principles. MIT Press, Cambridge (2002)

    Google Scholar 

  14. Reich, D.S., Mechler, F., Purpura, K.P., Victor, L.D.: Interspike intervals, receptive fields, and information encoding in primary visual cortex. Journal of Neuroscience 20(5), 1964–1974 (2000)

    Google Scholar 

  15. Froemke, R.C., Dan, Y.: Spike-timing-dependent synaptic modification induced by natural spike trains. Nature 416(6879), 433–438 (2002)

    Article  Google Scholar 

  16. Lungarella, M., Pegors, T., Bulwinkle, D., Sporns, O.: Methods for Quantifying the Informational Structure of Sensory and Motor Data. Neuroinformatics 3, 243–262 (2005)

    Article  Google Scholar 

  17. Lungarella, M., Sporns, O.: Map** Information Flow in Sensorimotor Networks. PLOS Computational Biology 2, 1301–1312 (2006)

    Article  Google Scholar 

  18. Mehta, S.B., Whitmer, D., Figueroa, R., Williams, B.A., Kleinfeld, D.: Active Spatial Perception in the Vibrissa Scanning Sensorimotor System. PLoS Biol. 5(2), e15 (2007)

    Google Scholar 

  19. Chiel, H.J., Beer, R.D.: The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences 20(12), 553–557 (1997)

    Article  Google Scholar 

  20. Lipson, H.: Curious and Creative Machines. In: The 50th Anniversary Summit of Artificial Intelligence, Ascona, Switzerland (2006)

    Google Scholar 

  21. Sporns, O., Tononi, G., Edelman, G.M.: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks 13(8-9), 909–922 (2000)

    Article  Google Scholar 

  22. Stoffregen, T.A., Pittenger, J.B.: Human echolocation as a basic form of perception and action. Ecological Psychology 7, 181–216 (1995)

    Article  Google Scholar 

  23. Bach-y-Rita, P.: Brain Mechanisms in Sensory Substitution. Academic Press, New York (1972)

    Google Scholar 

  24. Dennett, D.C.: Consciousness Explained. Little, Brown & Co., Boston (1991)

    Google Scholar 

  25. Ramon y Cajal, S.: Histologie du Systeme Nervex de l’Homme et des Vertebres. Maloine, Paris (1911)

    Google Scholar 

  26. Ramon y Cajal, S.: Les nouvelles idées sur la structure du système nerveux chez l’homme et chez les vertébrés (L. Azoulay, Trans.). C. Reinwald & Cie, Paris (1894)

    Google Scholar 

  27. Kalinichenko, S.G., Okhotin, V.E.: Unipolar brush cells–a new type of excitatory interneuron in the cerebellar cortex and cochlear nuclei of the brainstem. Neurosci. Behav. Physiol. 35(1), 21–36 (2005)

    Article  Google Scholar 

  28. Sporns, O., Tononi, G., Kötter, R.: The Human Connectome: A Structural Description of the Human Brain. PLOS Computational Biology 1, 245–251 (2005)

    Article  Google Scholar 

  29. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  30. Gerstner, W., Kreiter, A.K., Markram, H., Herz, A.V.M.: Neural codes: Firing rates and beyond. Proc. Natl. Acad. Sci. USA 94, 12740–12741 (1997)

    Article  Google Scholar 

  31. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience 18, 10464–10472 (1998)

    Google Scholar 

  32. Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computation 18(2), 245–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Maass, W., Natschlager, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  34. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006)

    Article  MathSciNet  Google Scholar 

  35. Mel, B.W.: Information-processing in dendritic trees. Neural Computation 6, 1031–1085 (1994)

    Article  MATH  Google Scholar 

  36. Weiler, I.J., Hawrylak, N., Greenough, W.T.: Morphogenesis in Memory Formation - Synaptic and Cellular Mechanisms. Behavioural Brain Research 66(1-2), 1–6 (1995)

    Article  Google Scholar 

  37. Majewska, A., Sur, M.: Motility of dendritic spines in visual cortex in vivo: Changes during the critical period and effects of visual deprivation. Proc. Natl. Acad. Sci. USA 100(26), 16024–16029 (2003)

    Article  Google Scholar 

  38. Leuner, B., Falduto, J., Shors, T.J.: Associative Memory Formation Increases the Observation of Dendritic Spines in the Hippocampus. J. Neurosci. 23(2), 659–665 (2003)

    Google Scholar 

  39. DeMarse, T.B., Wagenaar, D.A., Potter, S.M.: The neurally-controlled artificial animal: A neural-computer interface between cultured neural networks and a robotic body. Society for Neuroscience Abstracts 28, 347.1 (2002)

    Google Scholar 

  40. DeMarse, T.B., Wagenaar, D.A., Blau, A.W., Potter, S.M.: The neurally controlled animat: Biological brains acting with simulated bodies. Autonomous Robots 11, 305–310 (2001)

    Article  MATH  Google Scholar 

  41. Bakkum, D.J., Shkolnik, A.C., Ben-Ary, G., Gamblen, P., DeMarse, T.B., Potter, S.M.: Removing some ‘A’ from AI: Embodied Cultured Networks. In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence. LNCS (LNAI), vol. 3139, pp. 130–145. Springer, Heidelberg (2004)

    Google Scholar 

  42. Potter, S.M., Wagenaar, D.A., DeMarse, T.B.: Closing the Loop: Stimulation Feedback Systems for Embodied MEA Cultures. In: Taketani, M., Baudry, M. (eds.) Advances in Network Electrophysiology using Multi-Electrode Arrays, pp. 215–242. Springer, New York (2006)

    Google Scholar 

  43. Potter, S.M.: Two-photon microscopy for 4D imaging of living neurons. In: Yuste, R., Konnerth, A. (eds.) Imaging in Neuroscience and Development: A Laboratory Manual, pp. 59–70. Cold Spring Harbor Laboratory Press (2005)

    Google Scholar 

  44. Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110, 17–24 (2001)

    Article  Google Scholar 

  45. Bakkum, D.J., Chao, Z.C., Gamblen, P., Ben-Ary, G., Potter, S.M.: Embodying Cultured Networks with a Robotic Drawing Arm. In: The 29th IEEE EMBS Annual International Conference (2007)

    Google Scholar 

  46. Granger, R.: Engines of the brain: the computational instruction set of human cognition. AI Magazine 27, 15 (2006)

    Google Scholar 

  47. Linares-Barranco, A., Jiminez-Moreno, G., Linares-Barranco, B., Civit-Balcells, A.: On Algorithmic Rate-Coded AER Generation. IEEE Transactions on Neural Networks 17, 771–788 (2006)

    Article  Google Scholar 

  48. Seth, A.K., McKinstry, J.L., Edelman, G.M., Krichmar, J.L.: Visual binding through reentrant connectivity and dynamic synchronization in a brain-based device. Cerebral Cortex 14, 1185–1199 (2004)

    Article  Google Scholar 

  49. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain. Gosset/Putnam Press, New York (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Potter, S.M. (2007). What Can AI Get from Neuroscience?. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation