Food Web Interactions and Ecosystem Processes

  • Chapter
Insects and Ecosystem Function

Part of the book series: Ecological Studies ((ECOLSTUD,volume 173))

  • 2055 Accesses

Abstract

The effects of higher trophic levels such as herbivores and predators are usually not considered in studies of biodiversity and ecosystem processes. However, plants and organisms of higher trophic levels interact in many different ways, resulting in effects of plants on biodiversity of higher trophic levels as well as effects of higher trophic levels on plant biomass and diversity. We review the effects of higher trophic levels on plant biomass, plant diversity and ecosystem processes. Food web interactions such as apparent competition, omnivory, intraguild predation, interactions among plants, indirect plant defences and behavioural effects are important for ecosystem processes. Given the large variety of food web structures, generalizing rules relating food web interactions to ecosystem processes probably do not exist. Moreover, such predictions will also be impeded by the occurrence of multiple steady states in ecological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrawal AA, Klein CN (2000) What omnivores eat: direct effects of induced plant resistance on herbivores and indirect consequences for diet selection by omnivores. J Anim Ecol 69: 525 - 535

    Article  Google Scholar 

  • Agrawal AA, Kobayashi C, Thaler JS (1999) Influence of prey availability and induced host-plant resistance on omnivory by western flower thrips. Ecology 80: 518 - 523

    Article  Google Scholar 

  • Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivoryinduced volatiles elicit defense genes in lima bean leaves. Nature 406: 512 - 515

    Article  CAS  PubMed  Google Scholar 

  • Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29: 1049 - 1061

    Article  CAS  Google Scholar 

  • Armstrong RA, McGehee R (1980) Competitive exclusion.Am Nat 115: 151 - 170

    Google Scholar 

  • Augner M (1994) Should a plant always signal its defence against herbivores? Oikos 70: 322 - 332

    Article  Google Scholar 

  • Augner M, Fagerström T, Tuomi J (1991) Competition, defence and games between plants. Behav Ecol Sociobiol 29: 231 - 234

    Article  Google Scholar 

  • Beattie AJ (1985) The evolutionary ecology of ant–plant mutualisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bentley BL (1977) Extra-floral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8: 407 - 427

    Article  CAS  Google Scholar 

  • Bond EM, Chase JM (2002) Biodiversity and ecosystem functioning at local and regional spatial scales. Ecol Lett 5: 467 - 470

    Article  Google Scholar 

  • Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setala H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298: 615 - 618

    Article  CAS  PubMed  Google Scholar 

  • Brown VK, Gange AC (1992) Secondary plant succession–how is it modified by insect herbivory? Vegetatio 101: 3 - 13

    Article  Google Scholar 

  • Bruin J, Dicke M (2001) Chemical information transfer between wounded and unwounded plants: backing up the future. Biochem Syst Ecol 29: 1103 - 1113

    Article  CAS  Google Scholar 

  • Bruin J, Sabelis MW (2001) Meta-analysis of laboratory experiments on plant–plant information transfer. Biochem Syst Ecol 29: 1089 - 1102

    Article  CAS  Google Scholar 

  • Bruin J, Dicke M, Sabelis MW (1992) Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48: 525 - 529

    Article  CAS  Google Scholar 

  • Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6: 857 - 865

    Article  Google Scholar 

  • Carson WP, Root RB (1999) Top-down effects of insect herbivores during early succes-sion: influence on biomass and plant dominance. Oecologia 121: 260 - 272

    Article  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47: 267 - 297

    Article  CAS  PubMed  Google Scholar 

  • Coll M, Izraylevich S (1997) When predators also feed on plants: effects of competition and plant quality on omnivore–prey population dynamics. Annu Entomol Soc Am 90: 155 - 161

    Article  Google Scholar 

  • Coll M, Ridgway RL (1995) Functional and numerical responses of Orius insidiosus ( Heteroptera, Anthocoridae) to its prey in different vegetable crops. Annu Entomol Soc Am 88: 732-738

    Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393: 570 - 573

    Article  Google Scholar 

  • de Roos AM, Persson L (2002) Size-dependent life-history traits promote catastrophic collapses of top predators. Proc Natl Acad Sci Am 99: 12907 - 12912

    Article  CAS  Google Scholar 

  • de Ruiter P, Griffiths B, Moore JC (2002) Biodiversity and stability in soil ecosystems: patterns, processes and the effects of disturbance. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 102 - 113

    Google Scholar 

  • Dicke M (1994) Local and systemic production of volatile herbivore-induced terpenoids–their role in plant–carnivore mutualism. J Plant Physiol 143: 465 - 472

    Article  CAS  Google Scholar 

  • Dicke M, Bruin J (2001a) Chemical information transfer between damaged and undamaged plants–preface. Biochem Syst Ecol 29: 979 - 980

    Article  CAS  Google Scholar 

  • Dicke M, Bruin J (2001b) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29: 981 - 994

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38: 148 - 165

    Article  Google Scholar 

  • Dicke M, van Beek TA, Posthumus MA, Ben Dom N, van Bokhoven H, de Groot (1990) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions–involvement of host plant in its production. J Chem Ecol 16: 381 - 396

    Article  CAS  PubMed  Google Scholar 

  • Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125: 504 - 511

    Article  Google Scholar 

  • Drukker B, Scutareanu P, Sabelis MW (1995) Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions? Entomol Exp Appl 77: 193 - 203

    Article  Google Scholar 

  • Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99: 201 - 219

    Article  Google Scholar 

  • Dugatkin LA, Godin JGJ (2002) Prey approaching predators–a cost-benefit perspective. Ann Zool Fenn 29: 233 - 252

    Google Scholar 

  • English-Loeb GM, Karban R, Hougen-Eitzman D (1993) Direct and indirect competition between spider mites feeding on grapes. Ecol App 3: 699 - 707

    Article  Google Scholar 

  • Eubanks MD, Denno RF (2000) Host plants mediate omnivore–herbivore interactions and influence prey suppression. Ecology 81: 936 - 947

    Google Scholar 

  • Grover JP, Holt RD (1998) Disentangling resource and apparent competition: realistic models for plant–herbivore communities. J Theor Biol 191: 353 - 376

    Article  Google Scholar 

  • Gurevitch J, Morrison JA, Hedges LV (2000) The interaction between competition and predation: a meta-analysis of field experiments.Am Nat 155: 435 - 453

    Google Scholar 

  • Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158: 17 - 35

    Article  CAS  PubMed  Google Scholar 

  • Hairston NG, Hairston NG (1997) Does food web complexity eliminate trophic-level dynamics? Am Nat 149: 1001 - 1007

    Article  PubMed  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123 - 1127

    Article  CAS  PubMed  Google Scholar 

  • Hector A, Loreau M, Schmid B, Biodepth Project (2002) Biodiversity manipulation experiments: studies replicated at multiple sites. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 36 - 46

    Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Popul Biol 12: 197 - 229

    Article  CAS  PubMed  Google Scholar 

  • Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species.Am Nat 124: 377 - 406

    Google Scholar 

  • Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25: 495 - 520

    Article  Google Scholar 

  • Holt RD, Loreau M (2001) Biodiversity and ecosystem functioning: the role of trophic interactions and the importance of system openness. In: Kinzig A, Tilman D, Pacala SW (eds) Functional consequences of biodiversity: experimental progress and theoretical extensions. Princeton University Press, Princeton, pp 246 - 262

    Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302 - 1305

    Article  CAS  Google Scholar 

  • Hougen-Eitzman D, Karban R (1995) Mechanisms of interspecific competition that result in successful control of Pacific mites following inoculations of Willamette mites on grapevines. Oecologia 103: 157 - 161

    Article  Google Scholar 

  • Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402: 407 - 410

    Article  Google Scholar 

  • Hulot FD, Lacroix G, Lescher-Moutoue FO, Loreau M (2000) Functional diversity governs ecosystem response to nutrient enrichment. Nature 405: 340 - 344

    Article  CAS  PubMed  Google Scholar 

  • Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449 - 460

    Article  Google Scholar 

  • Huston MA, McBride AC (2002) Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 47 - 60

    Google Scholar 

  • Janssen A (1999) Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol Exp Appl 90: 191 - 198

    Article  Google Scholar 

  • Janssen A, van Alphen JJM, Sabelis MW, Bakker K (1995) Odour-mediated avoidance of competition in Drosophila parasitoids–the ghost of competition. Oikos 73: 356 - 366

    Article  Google Scholar 

  • Janssen A, Bruin J, Jacobs G, Schraag R, Sabelis MW (1997) Predators use volatiles to avoid prey patches with conspecifics. J Anim Ecol 66: 223 - 232

    Article  Google Scholar 

  • Janssen A, Sabelis MW, Bruin J (2002) Evolution of herbivore-induced plant volatiles. Oikos 97: 134 - 138

    Article  Google Scholar 

  • Janssen A, Willemse E, van der Hammen T (2003) Poor host plant quality causes omnivore to consume predator eggs. J Anim Ecol 72: 478 - 483

    Article  Google Scholar 

  • Karban R (2001) Communication between sagebrush and wild tobacco in the field. Biochem Syst Ecol 29: 995 - 1005

    Article  CAS  Google Scholar 

  • Karban R, English-Loeb G, Hougen-Eitzman D (1997) Mite vaccinations for sustainable management of spider mites in vineyards. Ecol App 7: 183 - 193

    Article  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141 - 2144

    Article  CAS  PubMed  Google Scholar 

  • Kuijper LDJ, Kooi BW, Zonneveld C, Kooijman S (2003) Omnivory and food web dynamics. Ecol Mod 163: 19 - 32

    Article  Google Scholar 

  • Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions–what are the ecological effects of anti-predator decision-making? Bioscience 48: 25 - 34

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation–areview and prospectus. Can J Zool-Rev Can Zool 68: 619 - 640

    Article  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91: 3 - 17

    Article  Google Scholar 

  • Loreau M, Naeem P, Inchausti J, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (200 1) Ecology–biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804 - 808

    Google Scholar 

  • McGrady-Steed J, Morin PJ (2000) Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81: 361 - 373

    Article  Google Scholar 

  • Morin PJ, Lawler SP (1995) Food-web architecture and population dynamics–theory and empirical evidence. Annu Rev Ecol Syst 26: 505 - 529

    Article  Google Scholar 

  • Mulder CPH, Koricheva J, Huss-Danell K, Hogberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecol Lett 2: 237 - 246

    Article  Google Scholar 

  • Mylius S, Klumpers K, de Roos AM, Persson L (2001) Impact of omnivory and stage structure on food web composition along a productivity gradient. Am Nat 158:259– 276

    Google Scholar 

  • Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390:507-509 Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6: 567 - 579

    Article  Google Scholar 

  • Norton AP, English-Loeb G, Gadoury D, Seem RC (2000) Mycophagous mites and foliar pathogens: leaf domatia mediate tritrophic interactions in grapes. Ecology 81: 490–499

    Article  Google Scholar 

  • O’Dowd DJ, Willson MF (1997) Leaf domatia and the distribution and abundance of foliar mites in broadleaf deciduous forest in Wisconsin.Am Midl Nat 137: 337 - 348

    Google Scholar 

  • Oksanen L, Fretwell S, Arruda J, Niemelä P (198 1) Exploitation ecosystems in gradients of primary productivity.Am Nat 118: 240 - 261

    Google Scholar 

  • Pallini A, Janssen A, Sabelis MW (1997) Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110: 179 - 185

    Article  Google Scholar 

  • Pemberton RW, Lee JH (1996) The influence of extrafloral nectaries on parasitism of an insect herbivore.Am J Bot 83: 1187 - 1194

    Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147: 813 - 846

    Article  Google Scholar 

  • Polis GA, Winemiller KO (1996) Food webs. Integration of patterns and dynamics. Chapman and Hall, New York

    Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation –potential competitors that eat each other. Annu Rev Ecol Syst 20: 297 - 330

    Article  Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels. Annu Rev Ecol Syst 11: 41 - 65

    Article  Google Scholar 

  • Raffaelli D, van der Putten WH, Persson L, Wardle DA, Petchey OL, Koricheva J, van der Heijden M, Mikola J, Kennedy T (2002) Multitrophic dynamics and ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 147 - 154

    Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents–theory and evidence. Biol Control 5: 303 - 335

    Article  Google Scholar 

  • Ruesink JL, Srivastava SD (2001) Numerical and per capita responses to species loss: mechanisms maintaining ecosystem function in a community of stream insect detrivores. Oikos 93: 221 - 234

    Article  Google Scholar 

  • Sabelis MW, Janssen A, Bruin J, Bakker FM, Drukker B, Scutareanu P, van Rijn PCJ (1999a) Interactions between arthropod predators and plants: a conspiracy against herbivorous arthropods? In: Bruin J, van der Geest LPS, Sabelis MW (eds) Ecology and evolution of the Acari. Kluwer, Dordrecht, pp 207 - 229

    Chapter  Google Scholar 

  • Sabelis MW, Janssen A, Pallini A, Venzon M, Bruin J, Drukker B, Scutareanu P (1999b) Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: from evolutionary ecology to agricultural applications. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. Am Phytopathol Soc Press, St. Paul, Minnesota, pp 269 - 296

    Google Scholar 

  • Sabelis MW, van Baalen M, Pels B, Egas M, Janssen A (2002) Evolution of exploitation and defense in tritrophic interactions. In: Dieckmann U, Metz JA, Sabelis MW, Sigmund K (eds) Adaptive dynamics of infectious diseases: in pursuit of virulence management. Cambridge University Press, Cambridge, pp 297 - 321

    Chapter  Google Scholar 

  • Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413: 591 - 596

    Article  CAS  PubMed  Google Scholar 

  • Schmid B, Hector A, Huston MA, Inchausti P, Nijs I, Leadley PW, Tilman D (2002) The design and analysis of biodiversity experiments. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 61 - 75

    Google Scholar 

  • Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388 - 1399

    Article  Google Scholar 

  • Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants.Am Nat 155: 141 - 153

    Google Scholar 

  • Sessions L, Kelly D (2002) Predator-mediated apparent competition between an introduced grass, Agrostis capillaris, and a native fern, Botrychium australe ( Ophioglossaceae), in New Zealand. Oikos 96: 102-109

    Google Scholar 

  • Shimoda T, Takabayashi J, Ashihara W, Takafuji A (1997) Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J Chem Ecol 23: 2033 - 2048

    Article  CAS  Google Scholar 

  • Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity.Am Nat 152: 738 - 750

    CAS  Google Scholar 

  • Sih A (1980) Optimal behavior: can foragers balance two conflicting needs? Science 210: 1041 - 1043

    Article  CAS  PubMed  Google Scholar 

  • Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399: 686 - 688

    Article  CAS  Google Scholar 

  • Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893 - 895

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718 - 720

    Article  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P (2002) Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 21 - 35

    Google Scholar 

  • Tumlinson JH, Lewis WJ, Vet LEM (1993) How parasitic wasps find their hosts. Sci Am 268: 100 - 106

    Article  CAS  Google Scholar 

  • Tuomi J, Augner M, Nilsson J (1994) A dilemma of plant defenses: is it really worth killing the herbivore? J Theor Biol 170: 427 - 430

    Article  Google Scholar 

  • Turlings TCJ, Fritzsche ME (1999) Attraction of parasitic wasps by caterpillar-damaged plants. In: Proc Novartis Foundation Symp 223, Insect–plant interactions and induced plant defence. Wiley, Chichester, pp 21 - 38

    Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251 - 1253

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, Pemberton RW (1989) Leaf domatia and mites: a plant protection–mutualism hypothesis. In: Bock JH, Linhart YB (eds) The evolutionary ecology of plants. Westview Press, Boulder, pp 341 - 359

    Google Scholar 

  • van Dam NM, Hadwich K, Baldwin IT (2000) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122: 371 - 379

    Article  Google Scholar 

  • van der Meijden E, Klinkhamer PGL (2000) Conflicting interests of plants and the natural enemies of herbivores. Oikos 89: 202 - 208

    Article  Google Scholar 

  • van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above-ground and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16: 547 - 554

    Article  Google Scholar 

  • van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97: 219 - 227

    Article  Google Scholar 

  • van Rijn PCJ, Van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83: 2664 - 2679

    Article  Google Scholar 

  • Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol41: 101 - 114

    Google Scholar 

  • Walter DE, O’Dowd DJ (1992) Leaves with domatia have more mites. Ecology 73:1514– 1518

    Google Scholar 

  • Wardle DA, van der Putten WH (2002) Biodiversity, ecosystem functioning and aboveground–below-ground linkages. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Oxford University Press, Oxford, pp 155 - 168

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janssen, A., Sabelis, M.W. (2008). Food Web Interactions and Ecosystem Processes. In: Weisser, W.W., Siemann, E. (eds) Insects and Ecosystem Function. Ecological Studies, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74004-9_9

Download citation

Publish with us

Policies and ethics

Navigation