Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1271 Accesses

Abstract

A variety of on-going research is focused on the development and analysis of methods to decrease the time required to progress from the computer modeling of the design surface to the machining while maintaining or improving the quality of the surface. One of the most important areas is tool path planning for numerical control (NC) machining. The main goal is obtaining the cutter location and orientation data that allow for an efficient surface milling within an allowed machining error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. The NURBS++ package, http://libnurbs.sourceforge.net/index.shtml.

    Google Scholar 

  2. NURBS Toolbox, http://www.aria.uklinux.net/nurbs.php3.

    Google Scholar 

  3. NIST/IGES, http://www.nist.gov/iges/.

    Google Scholar 

  4. SLC file format, http://www-rp.me.vt.edu/bohn/rp/SLC.html.

    Google Scholar 

  5. CAD/CAM Software and File Format Compatiblity Matrix, http://www.cs.cmu.edu/People/unsal/research/rapid/cadcam.html.

    Google Scholar 

  6. CAD File Formats, http://www.actify.com/v2/products/Importers/formats.htm.

    Google Scholar 

  7. Anderson, R. O. 1978. Detecting and eliminating collisions in NC machining. Computer-Aided Design, 10(4):231–237.

    Article  Google Scholar 

  8. Anotaipaiboon, W. and Makhanov, S. S. 2005. Tool path generation for five-axis NC machining using adaptive space-filling curves. International Journal of Production Research, 43(8):1643–1665.

    MATH  Google Scholar 

  9. Arkin, E. M., Fekete, S. P., and Mitchell, J. S. B. 2000. Approximation algorithms for lawn mowing and milling. Computational Geometry: Theory and Applications, 17(1–2):25–50.

    MATH  MathSciNet  Google Scholar 

  10. Balasubramaniam, M., Sarma, S. E., and Marciniak, K. 2003. Collision-free finishing toolpaths from visibility data. Computer-Aided Design, 35(4):359–374.

    Article  Google Scholar 

  11. Bao, H. P. and Yim, H. 1992. Tool path determination for end milling of non-convex shaped polygons. NAMRI Transactions, pages 151–158.

    Google Scholar 

  12. Bieterman, M. B. and Sandstrom, D. R. 2003. A curvilinear toolpath method for pocket machining. Journal of Materials Processing Technology, 125(4):709–715.

    Google Scholar 

  13. Blasquez, I. and Poiraudeau, J.-F. 2004. Undo facilities for the extended z-buffer in NC machining simulation. Computers in Industry, 53(2):193–204.

    Article  Google Scholar 

  14. Bohez, E. L. J., Makhanov, S. S., and Sonthipermpoon, K. 2000a. Adaptive non-linear grid tool path optimization for 5-axis machining. International Journal of Production Research, 38(17):4329–4343.

    Article  MATH  Google Scholar 

  15. Bohez, E. L. J., Makhanov, S. S., and Sonthipermpoon, K. 2000b. Adaptive nonlinear tool path optimization for 5-axis machining. International Journal of Production Research, 38(17):4329–4343.

    Article  MATH  Google Scholar 

  16. Bohez, E. L. J., Minh, N. T. H., Kiatsrithanakorn, B., Natasukon, P., Ruei-Yun, H., and Son, L. T. 2003. The stencil buffer sweep plane algorithm for 5-axis CNC tool path verification. Computer-Aided Design, 35(12):1129–1142.

    Article  Google Scholar 

  17. Butler, J., Haack, B., and Tomizuka, M. 1988. Reference input generation for high speed coordinated motion of a two axis system. In Symposium on Robotics, Winter Annual Meeting of the American Society of Mechanical Engineers, pages 457–470.

    Google Scholar 

  18. Chen, C.-C. A., Juang, Y.-S., and Lin, W.-Z. 2002. Generation of fractal toolpaths for irregular shapes of surface finishing areas. Journal of Materials Processing Technology, 127(2):146–150.

    Article  Google Scholar 

  19. Chen, Y. D., Ni, J., and Wu, S. M. 1993. Real-time CNC tool path generation for machining IGES surfaces. ASME Journal of Engineering for Industry, 115(4):480–486.

    Article  Google Scholar 

  20. Chiou, C.-J. and Lee, Y.-S. 2002. A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Computer-Aided Design, 34(5):357–371.

    Article  Google Scholar 

  21. Choi, B. K. and Jerard, R. B. 1998. Computer Aided Machining-the z-Map Way: Sculptured Surface Machining-Theory and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  22. Choi, Y.-K. and Banerjee, A. Tool path generation and tolerance analysis for free-form surfaces. International Journal of Machine Tools and Manufacture. in press.

    Google Scholar 

  23. Cox, J. J., Takezaki, Y., Ferguson, H. R. P., Kohkonen, K. E., and Mulkay, E. L. 1994. Space-filling curves in tool-path applications. Computer-Aided Design, 26(3):215–224.

    Article  MATH  Google Scholar 

  24. De Boor, C. 2001. A practical guide to splines. Springer, New York, USA.

    MATH  Google Scholar 

  25. Dragomatz, D. and Mann, S. 1997. A classified bibliography of literature on NC milling path generation. Computer-Aided Design, 29(3):239–247.

    Article  Google Scholar 

  26. Elber, G. and Cohen, E. 1990. Hidden curve removal for free form surfaces. In SIGGRAPH’90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, pages 95–104.

    Google Scholar 

  27. Elber, G. and Cohen, E. 1995. Arbitrarily precise computation of gauss maps and visibility sets for freeform surfaces. In SMA’95: Proceedings of the third ACM symposium on Solid modeling and applications, pages 271–279.

    Google Scholar 

  28. Elber, G. and Cohen, E. 1999. A unified approach to verification in 5-axis freeform milling environments. Computer-Aided Design, 31(13):795–804.

    Article  MATH  Google Scholar 

  29. Elber, G. and Zussman, E. 1998. Cone visibility decomposition of freeform surface. Computer-Aided Design, 30(4):315–320.

    Article  MATH  Google Scholar 

  30. Erkorkmaz, K. and Altintas, Y. 2001. High speed CNC system design. Part I: jerk limited trajectory generation and quintic spline interpolation. International Journal of Machine Tools and Manufacture, 41(9):1323–1345.

    Article  Google Scholar 

  31. Farin, G. E. 1999. NURBS: From Projective Geometry to Practical Use. A. K. Peters, Ltd., Natick, MA, USA.

    MATH  Google Scholar 

  32. Farouki, R. T. and Neff, C. A. 1995. Hermite interpolation by Pythagorean hodograph quintics. Mathematics of Computation, 64(212):1589–1609.

    Article  MATH  MathSciNet  Google Scholar 

  33. Farouki, R. T. and Sakkalis, T. 1994. Pythagorean-hodograph space curves. Advances in Computational Mathematics, 2(1):41–66.

    Article  MATH  MathSciNet  Google Scholar 

  34. Farouki, R. T., Tsai, Y.-F., and Wilson, C. S. 2000. Physical constraints on feedrates and feed accelerations along curved tool paths. Computer Aided Geometric Design, 17(4):337–359.

    Article  MATH  MathSciNet  Google Scholar 

  35. Farouki, R. T., Tsai, Y.-F., and Yuan, G.-F. 1999. Contour machining of free-form surfaces with real-time PH curve CNC interpolators. Computer Aided Geometric Design, 16(1):61–76.

    Article  MATH  MathSciNet  Google Scholar 

  36. Flutter, A. and Todd, J. 2001. A machining strategy for toolmaking. Computer-Aided Design, 33(13):1009–1022.

    Article  Google Scholar 

  37. Gani, E. A., Kruth, J. P., Vanherck, P., and Lauwers, B. 1997. A geometrical model of the cut in five-axis milling accounting for the influence of tool orientation. International Journal of Advanced Manufacturing Technology, 13(10):677–684.

    Article  Google Scholar 

  38. Garcia-Alonso, A., Serrano, N., and Flaquer, J. 1994. Solving the collision detection problem. IEEE Computer Graphics and Applications, 14(3):36–43.

    Article  Google Scholar 

  39. Gian, R., Lin, T., and Lin, A. C. 2003. Planning of tool orientation for five-axis cavity machining. International Journal of Advanced Manufacturing Technology, 22(1–2):150–160.

    Article  Google Scholar 

  40. Goldstein, B. L., Kemmerer, S. J., and Parks, C. H. 1998. A brief history of early product data exchange standards-NISTIR 6221. Technical report, National Institute of Standards and Technology.

    Google Scholar 

  41. Gray, P. J., Bedi, S., and Ismail, F. 2003. Rolling ball method for 5-axis surface machining. Computer-Aided Design, 35(4):347–357.

    Article  Google Scholar 

  42. Gray, P. J., Bedi, S., and Ismail, F. 2005. Arc-intersect method for 5-axis tool positioning. Computer-Aided Design, 37(7):663–674.

    Article  Google Scholar 

  43. Gray, P. J., Ismail, F., and Bedi, S. 2007. Arc-intersect method for 3 11/22-axis tool paths on a 5-axis machine. International Journal of Machine Tools and Manufacture, 47(1):182–190.

    Article  Google Scholar 

  44. Griffiths, J. G. 1994. Toolpath based on Hilbert’s curve. Computer-Aided Design, 26(11):839–844.

    Article  Google Scholar 

  45. Guyder, M. K. 1990. Automating the optimization of 2 1/2 axis milling. Computers in Industry, 15(3):163–168.

    Article  Google Scholar 

  46. Hansen, A. and Arbab, F. 1992. An algorithm for generating NC tool paths for arbitrarily shaped pockets with islands. ACM Trans. Graph., 11(2):152–182.

    Article  MATH  Google Scholar 

  47. Hatna, A. and Grieve, B. 2000. Cartesian machining versus parametric machining: a comparative study. International Journal of Production Research, 38(13):3043–3065.

    Article  Google Scholar 

  48. Held, M. 1991a. A geometry-based investigation of the tool path generation for zigzag pocket machining. The Visual Computer, 7(5–6):296–308.

    Article  Google Scholar 

  49. Held, M. 1991b. On the computational geometry of pocket machining. Springer-Verlag New York, Inc., New York, NY, USA.

    MATH  Google Scholar 

  50. Held, M., Klosowski, J., and Mitchell, J. S. B. 1995. Evaluation of collision detection methods for virtual reality fly-throughs. In proceedings Seventh Canadian Conference on Computational Geometry, pages 205–210.

    Google Scholar 

  51. Held, M., Lukàcs, G., and Andor, L. 1994. Pocket machining based on contour-parallel tool paths generated by means of proximity maps. Computer-Aided Design, 26(3):189–203.

    Article  MATH  Google Scholar 

  52. Hook, T. V. 1986. Real-time shaded NC milling display. In SIGGRAPH’ 86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques, pages 15–20.

    Google Scholar 

  53. Hornung, C., Lellek, W., Rehwald, P., and Straßer, W. 1985. An area-oriented analytical visibility method for displaying parametrically defined tensor-product surfaces. Computer Aided Geometric Design, 2(1–3):197–205.

    Article  MATH  MathSciNet  Google Scholar 

  54. Hsueh, Y.-W., Hsueh, M.-H., and Lien, H.-C. Automatic selection of cutter orientation for preventing the collision problem on a five-axis machining. International Journal of Advanced Manufacturing Technology. in press.

    Google Scholar 

  55. Hu, J., **ao, L., Wang, Y., and Wu, Z. 2006. An optimal feedrate model and solution algorithm for a high-speed machine of small line blocks with look-ahead. International Journal Advanced Manufacturing Technology, 28(9):930–935.

    Article  Google Scholar 

  56. Huang, Y. and Oliver, J. H. 1995. Integrated simulation, error assessment, and tool path correction for five-axis NC machining. Journal of Manufacturing Systems, 14(5):331334.

    Google Scholar 

  57. Jeong, J. and Kim, K. 1999a. Generating tool paths for free-form pocket machining using z-buffer-based Voronoi diagrams. International Journal of Advanced Manufacturing Technology, 15(3):182–187.

    Article  Google Scholar 

  58. Jeong, J. and Kim, K. 1999b. Generation of tool paths for machining free-form pockets with islands using distance maps. International Journal of Advanced Manufacturing Technology, 15(5):311–316.

    Article  Google Scholar 

  59. Jerard, R. B. and Drysdale, R. L. 1989. Methods for geometric modeling, simulation and spacial verification of NC machining programs. In Wozny, M. J., Turner, J. U., and Pegna, J., editors, Product modeling for computer-aided design and manufacturing. Elsevier/North-Holland, New York, USA.

    Google Scholar 

  60. Jun, C.-S., Cha, K., and Lee, Y.-S. 2003. Optimizing tool orientations for 5-axis machining by configuration-space search method. Computer-Aided Design, 35(6):549–566.

    Article  Google Scholar 

  61. Jüttler, B. 2001. Hermite interpolation by Pythagorean hodograph curves of degree seven. Mathematics of Computation, 70(235):1089–1111.

    Article  MATH  MathSciNet  Google Scholar 

  62. Kang, J.-K. and Suh, S.-H. 1997. Machinability and set-up orientation for five-axis numerically controlled machining of free surfaces. International Journal of Advanced Manufacturing Technology, 13(5):311–325.

    Article  Google Scholar 

  63. Kim, H.-C., Lee, S.-G., and Yang, M.-Y. An optimized contour parallel tool path for 2D milling with flat endmill. International Journal of Advanced Manufacturing Technology. in press.

    Google Scholar 

  64. Ko, T. J., Kim, H. S., and Park, S. H. 2005. Machineability in NURBS interpolator considering constant material removal rate. International Journal of Machine Tools and Manufacture, 45(6):665–671.

    Article  Google Scholar 

  65. Kondo, M. 1994. Decomposition of complex geometry for a manufacturing application. Computer-Aided Design, 26(3):244–252.

    Article  MATH  Google Scholar 

  66. Koren, Y. 1976. Interpolator for a computer numerical control system. IEEE Transactions on Computers, 25(1):32–37.

    MATH  Google Scholar 

  67. Kruth, J.-P. and Klewais, P. 1994. Optimization and dynamic adaptation of the cutter inclination during five-axis milling of sculptured surfaces. Anals CIRP, 43(1):443–448.

    Google Scholar 

  68. Lai, Y.-L., Wu, J. S.-S., Hung, J.-P., and Chen, J.-H. 2006. A simple method for invalid loops removal of planar offset curves. International Journal of Advanced Manufacturing Technology, 27(11–12):1153–1162.

    Article  Google Scholar 

  69. Langeron, J.M., Duc, E., Lartigue, C., and Bourdet, P. 2004. A new format for 5-axis tool path computation, using Bspline curves. Computer-Aided Design, 36(12):1219–1229.

    Article  Google Scholar 

  70. Lauwers, B., Dejonghe, P., and Kruth, J. P. 2003. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Computer-Aided Design, 35(5):421–432.

    Article  Google Scholar 

  71. Lee, Y.-S. 1997. Admissible tool orientation control of gouging avoidance for 5-axis complex surface machining. Computer-Aided Design, 29(7):507–521.

    Article  Google Scholar 

  72. Lee, Y.-S. and Ji, H. 1997. Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining. International Journal of Production Research, 35(1):225–252.

    Article  MATH  Google Scholar 

  73. Li, F., Wang, X. C., Ghosh, S. K., Kong, D. Z., Lai, T. Q., and Wu, X. T. 1995. Tool-path generation for machining sculptured surface. Journal of Materials Processing Technology, 48(1):811–816.

    Article  Google Scholar 

  74. Li, S. X. and Jerard, R. B. 1994. 5-axis machining of sculptured surfaces with a flat-end cutter. Computer-Aided Design, 26(3):165–178.

    Article  MATH  Google Scholar 

  75. Li, Z. and Chen, W. 2006. A global cutter positioning method for multi-axis machining of sculptured surfaces. International Journal of Machine Tools and Manufacture, 46(12–13):1428–1434.

    Article  Google Scholar 

  76. Lin, R.-S. and Koren, Y. 1996. Efficient tool-path planning for machining free-form surfaces. ASME Journal of Engineering for Industry, 118(1):20–28.

    Google Scholar 

  77. Lo, C. C. 1997. Feedback interpolator for CNC machine tool. ASME. Journal of Manufacturing Science and Engineering, 119(4):587592.

    Google Scholar 

  78. Lo, C. C. 1999a. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter. Computer-Aided Design, 31(9):557–566.

    Article  MATH  Google Scholar 

  79. Lo, C. C. 1999b. Real-time generation and control of cutter path for 5-axis CNC machining. International Journal of Machine Tools and Manufacture, 39(3):471–488.

    Article  Google Scholar 

  80. Lo, C. C. 2000. CNC machine tool surface interpolator for ball-end milling of free-form surfaces. International journal of machine tools and manufacture, 40(3):307–326.

    Article  Google Scholar 

  81. Ma, W., But, W.-C., and He, P. 2004. NURBS-based adaptive slicing for efficient rapid prototy**. Computer-Aided Design, 36(13):1309–1325.

    Article  Google Scholar 

  82. Makhanov, S. S. 1999. An application of variational grid generation techniques to the tool-path optimization of industrial milling robots. Journal of Materials Processing Technology, 39(9):1524–1535.

    MATH  Google Scholar 

  83. Makhanov, S. S., Batanov, D., Bohez, E., Sonthipaumpoon, K., Anotaipaiboon, W., and Tabucanon, M. 2002. On the tool-path optimization of a milling robot. Computers & Industrial Engineering, 43(3):455–472.

    Article  Google Scholar 

  84. Makhanov, S. S. and Ivanenko, S. A. 2003. Grid generation as applied to optimize cutting operations of the five-axis milling machine. Applied Numerical Mathematics, 46(3–4):331–351.

    Article  MATH  Google Scholar 

  85. Mani, K., Kulkarni, P., and Dutta, D. 1999. Region-based adaptive slicing. Computer-Aided Design, 31(5):317–333.

    Article  MATH  Google Scholar 

  86. Marciniak, K. 1987. Influence of surface shape in admissible tool positions in 5-axis face milling. Computer-Aided Design, 19(5):233–236.

    Article  MATH  Google Scholar 

  87. Monreal, M. and Rodríguez, C. A. 2003. Influence of tool path strategy on the cycle time of high-speed milling. Computer-Aided Design, 35(4):395–401.

    Article  Google Scholar 

  88. Moon, H. P., Farouki, R. T., and Choi, H. I. 2001. Construction and shape analysis of PH quintic hermite interpolants. Computer Aided Geometric Design, 18(2):93–115.

    Article  MATH  MathSciNet  Google Scholar 

  89. Morishige, K., Takeuchi, Y., and Kase, K. 1999. Tool path generation using C-space for 5-axis control machining. Journal of Manufacturing Science and Engineering, 121(1):144–149.

    Google Scholar 

  90. Müller, M., Erds, G., and **rouchakis, P. C. 2004. High accuracy spline interpolation for 5-axis machining. Computer-Aided Design, 36(13):1379–1393.

    Article  Google Scholar 

  91. Narayanaswami, R. and Choi, Y. 2001. NC machining of freeform pockets with arbitrary wall geometry using a grid-based navigation approach. International Journal of Advanced Manufacturing Technology, 18(10):708–716.

    Article  Google Scholar 

  92. Naylor, B., Amanatides, J., and Thibault, W. 1990. Merging BSP trees yields polyhedral set operations. In SIGGRAPH’ 90: Proceedings of the 17th annual conference on Computer graphics and interactive techniques, pages 115–124.

    Google Scholar 

  93. Noborio, H., Fukuda, S., and Arimoto, S. 1989. Fast interference check method using octree representation. Advanced robotics, 3(3):193–212.

    Article  Google Scholar 

  94. Park, S. C. and Choi, B. K. 2000. Tool-path planning for direction-parallel area milling. Computer-Aided Design, 32(1):17–25.

    Article  MathSciNet  Google Scholar 

  95. Park, S. C. and Chung, Y. C. 2002. Offset tool-path linking for pocket machining. Computer-Aided Design, 34(4):299–308.

    Article  Google Scholar 

  96. Park, S. C., Chung, Y. C., and Choi, B. K. 2003. Contour-parallel offset machining without tool-retractions. Computer-Aided Design, 35(9):841–849.

    Article  Google Scholar 

  97. Persson, H. 1978. NC machining of arbitrarily shaped pockets. Computer-Aided Design, 10(3):169–174.

    Article  MathSciNet  Google Scholar 

  98. Piegl, L. and Tiller, W. 1995. The NURBS book. Springer-Verlag, London, UK.

    MATH  Google Scholar 

  99. Pottmann, H. and Ravani, B. 2000. Singularities of motions constrained by contacting surfaces. Mechanism and Machine Theory, 35(7):963–984.

    Article  MATH  MathSciNet  Google Scholar 

  100. Pottmann, H., Wallner, J., Glaeser, G., and Ravani, B. 1999. Geometric criteria for gouge-free three-axis milling of sculptured surfaces. ASME Journal of Mechanical Design, 121(2):241–248.

    Google Scholar 

  101. Radzevich, S. P. 2005. A cutting-tool-dependent approach for partitioning of sculptured surface. Computer-Aided Design, 37(7):767–778.

    Article  Google Scholar 

  102. Radzevich, S. P. and Goodman, E. D. 2002. Computation of optimal workpiece orientation for multi-axis NC machining of sculptured part surfaces. ASME Journal of Mechanical Design, 124(2):201–212.

    Article  Google Scholar 

  103. Rao, A. and Sarma, R. 2000. On local gouging in five-axis sculptured surface machining using flat-end tools. Computer-Aided Design, 32(7):409–420.

    Article  Google Scholar 

  104. Rao, N., Ismail, F., and Bedi, S. 1997. Tool path planning for five-axis machining using the principal axis method. International Journal of Machine Tools and Manufacture, 37(7):1025–1040.

    Article  Google Scholar 

  105. Roth, D., Ismail, F., and Bedi, S. 2003. Mechanistic modelling of the milling process using an adaptive depth buffer. Computer-Aided Design, 35(14):1287–1303.

    Article  Google Scholar 

  106. Roy, U. and Xu, Y. 1999. Computation of a geometric model of a machined part from its NC machining programs. Computer-Aided Design, 31(6):401–411.

    Article  MATH  Google Scholar 

  107. Sang-Kyu Lee, S.-L. K. 2002. Development of simulation system for machining process using enhanced Z map model. Journal of materials processing technology, 130–131:608–617.

    Article  Google Scholar 

  108. Sarma, R. 2000. An assessment of geometric methods in trajectory synthesis for shape-creating manufacturing operations. Journal of Manufacturing Systems, 19(1):59–72.

    Article  MathSciNet  Google Scholar 

  109. Siller, H., Rodriguez, C. A., and Ahuett, H. 2006. Cycle time prediction in high-speed milling operations for sculptured surface finishing. Journal of Materials Processing Technology, 174(1–3):355–362.

    Article  Google Scholar 

  110. Suh, S. H. and Shin, Y. S. 1996. Neural network modeling for tool path planning of rough cut in complex pocket milling. Journal of Manufacturing Systems, 15(5):295–304.

    Google Scholar 

  111. Sun, Y.-W., Guoa, D.-M., and Jia, Z.-Y. 2006. Spiral cutting operation strategy for machining of sculptured surfaces by conformal map approach. Journal of Materials Processing Technology, 180(1–3):74–82.

    Article  Google Scholar 

  112. Suresh, K. and Yang, D. C. H. 1994. Constant scallop-height machining of free-form surfaces. ASME Journal of Engineering for Industry, 116(2):253–259.

    Google Scholar 

  113. Takata, S. 1989. A cutting simulation system for machinability evaluation using a workpiece model. Anals CIRP, 38(1):417–420.

    Google Scholar 

  114. Takeuchi, Y., Shimizu, H., Idemura, T., Watanabe, T., and Ito, T. 1990. 5-axis control machining based on solid model. Journal of the Japan Society for Precision Engineering, 56(1):111–116.

    Google Scholar 

  115. Tata, K., Fadel, G., Bagchi, A., and Aziz, N. 1998. Efficient slicing for layered manufacturing. Rapid Prototy** Journal, 4(4):151–167.

    Article  Google Scholar 

  116. Vafaeesefa, A. and ElMaraghy, H. A. 1998. Accessibility analysis in 5-axis machining of sculptured surfaces. In Proceedings of the 1998 IEEE International Conference on Robotics & Automation, pages 2464–2469.

    Google Scholar 

  117. Vaněček, Jr., G. 1991. BRep-Index: a multidimensional space partitioning tree. In SMA’ 91: Proceedings of the first ACM symposium on Solid modeling foundations and CAD/CAM applications, pages 35–44.

    Google Scholar 

  118. Šír, Z., Feichtinger, R., and Jüttler, B. 2006. Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Computer-Aided Design, 38(6):608–618.

    Article  Google Scholar 

  119. Šír, Z. and Jüttler, B. 2005. Constructing acceleration continuous tool paths using Pythagorean hodograph curves. Mechanism and Machine Theory, 40(11):1258–1272.

    Article  MATH  Google Scholar 

  120. Wallner, J. and Pottmann, H. 2000. On the geometry of sculptured surface machining. In Laurent, P.-J., Sablonnière, P., and Schumaker, L. L., editors, Curve and Surface Design. Vanderbilt University Press, Nashville, USA.

    Google Scholar 

  121. Wang, F.-C. and Wright, P. K. 1998. Open architecture controllers for machine tools, Part 2: A real time quintic spline interpolator. Journal of manufacturing science and engineering, 120(2):425–432.

    Google Scholar 

  122. Wang, F.-C. and Yang, D. C. H. 1993. Nearly arc-length parameterized quintic-spline interpolation for precision machining. Computer-Aided Design, 25(5):281–288.

    Article  MATH  Google Scholar 

  123. Warkentin, A., Ismail, F., and Bedi, S. 1998. Intersection approach to multi-point machining of sculptured surfaces. Computer Aided Geometric Design, 15(6):567–584.

    Article  MATH  MathSciNet  Google Scholar 

  124. Warkentin, A., Ismail, F., and Bedi, S. 2000. Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Computer Aided Geometric Design, 17(1):83–100.

    Article  MathSciNet  Google Scholar 

  125. Weck, M., Meylahn, A., and Hardebusch, C. 1999. Innovative algorithms for spline-based CNC controller, production engineering research and development in germany. Annals of the German Academic Society for Production Engineering, VI(1):83–86.

    Google Scholar 

  126. Weck, M. and Ye, G. H. 1990. Sharp corner tracking using the IKF control strategy. Annals CIRP, 39(1):437–441.

    Article  Google Scholar 

  127. Woo, T. C. 1994. Visibility maps and spherical algorithms. Computer-Aided Design, 26(1):6–16.

    Article  MATH  Google Scholar 

  128. Xu, X. J., Bradley, C., Zhang, Y. F., Loh, H. T., and Wong, Y. S. 2002. Tool-path generation for five-axis machining of free-form surfaces based on accessibility analysis. International Journal of Production Research, 40(14):3253–3274.

    Article  MATH  Google Scholar 

  129. Y-S Lee, T.-C. C. 1996. Automatic cutter selection for five-axis sculptured surface machining. International Journal of Production Research, 34(4):977–998.

    MATH  Google Scholar 

  130. Yoon, J.-H. 1997. Tool tip gouging avoidance and optimal tool positioning for 5-axis sculptured surface machining. International Journal of Production Research, 41(10):2125–2142.

    Article  Google Scholar 

  131. Yoon, J.-H., Pottmann, H., and Lee, Y.-S. 2003. Locally optimal cutting positions for 5-axis sculptured surface machining. Computer-Aided Design, 35(1):69–81.

    Article  Google Scholar 

  132. Young, H.-T., Chuang, L.-C., Gerschwiler, K., and Kamps, S. 2004. A five-axis rough machining approach for a centrifugal impeller. International Journal of Advanced Manufacturing Technology, 23(3–4):233–239.

    Article  Google Scholar 

  133. Zhang, Q. G. and Greenway, R. B. 1998. Development and implementation of a NURBS curve motion interpolator. Robotics and Computer-Integrated Manufacturing, 14(1):27–36.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Introduction. In: Advanced Numerical Methods to Optimize Cutting Operations of Five-Axis Milling Machines. Springer Series in Advanced Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71121-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71121-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71120-9

  • Online ISBN: 978-3-540-71121-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation