Ultrasonic Sensing: Fundamentals and its Applications to Nondestructive Evaluation

  • Chapter
Sensors

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 21))

Abstract

This chapter provides the fundamentals of ultrasonic sensing techniques that can be used in the various fields of engineering and science. It also includes some advanced techniques used for non-destructive evaluations. At first, basic characteristics of ultrasonic waves propagating in media are described briefly. Secondly, basic concepts for measuring ultrasonic waves are described with introductory subjects of ultrasonic transducers that generate and receive ultrasonic waves. Finally, specialized results demonstrating the capabilities of using a buffer rod sensor for ultrasonic monitoring at high temperatures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Kolsky (1963) Stress Waves in Solids, Dover Publications, New York.

    Google Scholar 

  2. W. C. Elmore and M. A. Heald (1985) Physics of Waves, Dover Publications, New York.

    Google Scholar 

  3. D. Royer and E. Dieulesaint (2000) Elastic Waves in Solids I & II, Springer-Verlag, Berlin.

    Google Scholar 

  4. L. M. Brekhovskikh (1980). Waves in Layered Media 2nd Edition, Academic press, New York.

    MATH  Google Scholar 

  5. J. D. Achenbach (1990) Wave Propagation in Elastic Solids, Elsevier Science Publisher, Amsterdam.

    Google Scholar 

  6. B. A. Auld (1990) Acoustic Fields and Waves in Solids 2nd Edition Vol. 1 & 2, Krieger Publishing, Florida.

    Google Scholar 

  7. J. L. Rose (1999) Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge.

    Google Scholar 

  8. G. S. Kino (1987) Acoustic Waves Devices, Imaging and Analog Signal Processing, Prentice-Holl, New Jersey.

    Google Scholar 

  9. R. N. Thurston and A. D. Pierce (Editors) (1999) Ultrasonic Instruments and Devices I & II, Academic Press, San Diego.

    Google Scholar 

  10. A. Arnau (2004) Piezoelectric Transducers and Applications, Springer-Verlag, Berlin.

    Google Scholar 

  11. E. P. Papadakis (Editor) (1999) Ultrasonic Instruments & Devices, Academic Press, San Diego.

    Google Scholar 

  12. R. N. Thurston and A. D. Pierce (Editors) (1990) Ultrasonic Measurement Methods, Academic Press, San Diego.

    Google Scholar 

  13. J. Krautkramer and H. Krautkramer (1990) Ultrasonic Testing of Materials 4th Revised Edition, Springer-Verlag, Berlin.

    Google Scholar 

  14. A. Briggs (1992) Acoustic Microscopy, Clarendon Press, Oxford.

    Google Scholar 

  15. M. Levy, H. E. Bass, and R. Stern (Editors) (2001) Modern Acoustical Techniques for the Measurement of Mechanical Properties, Academic Press, San Diego.

    Google Scholar 

  16. T. Kundu (Editor) (2004) Ultrasonic Nondestructive Evaluation, CRC Press, Boca Raton.

    Google Scholar 

  17. D. R. Raichel (2006) The Science and Applications of Acoustics 2nd Edition, Springer Science+Business Media, New York.

    Google Scholar 

  18. L. W. Schmerr Jr. and S.-J. Song (2007) Ultrasonic Nondestructive Evaluation Systems, Springer Science+Business Media, New York.

    Google Scholar 

  19. B. M. Lempriere (2002) Ultrasound and Elastic Waves: Frequently Asked Questions, Academic Press, San Diego.

    Google Scholar 

  20. K. F. Graff (1991) Wave Motion in Elastic Solid, Dover Publications, New York.

    Google Scholar 

  21. J.-P. Monchalin (2007) Laser-Ultrasonics: Principles and Industrial Applications, in Ultrasonic and advanced Methods for Nondestructive Testing and Materials Characterization, chapter 4, edited by C. F. Chen, World Scientific, New Jersey, pp. 79–115.

    Google Scholar 

  22. H. M. Frost (1979) Electromagnetic-Ultrasonic Transducers: Principles, Practice, and Applications: Physical Acoustics XIV, edited by W. P. Mason and R. N Thurston, Academic Press, New York, pp. 179–270.

    Google Scholar 

  23. M. Hirao and H. Ogi (2003) EMATS for Science and Industry, Kluwer Academic Publishers, Boston.

    Google Scholar 

  24. D. W. Schindel, D. A. Hutchins, L. Zou, and M. Sayer (1995) The Design and Characterization of Micromachined Air-Coupled Capacitance Transducers, IEEE Trans. Ultrason. Ferroelec. Freq. Control. UFFC-42: 42–50.

    Google Scholar 

  25. D. D. Sukmana and I. Ihara (2007) Quantitative Evaluation of Two Kinds of Surface Roughness Parameters Using Air-Coupled Ultrasound, Jpn J. App. Phys., 46(5B): 4508–4513.

    Article  Google Scholar 

  26. C.-K. Jen,, J. G. Legoux, and L. Parent (2000) Experimental Evaluation of Clad Metallic Buffer Rods for High Temperature Ultrasonic Measurements, NDT & E International 33, pp. 145–153.

    Article  Google Scholar 

  27. C.-K. Jen, D. R. França, and Z. Sun, and I. Ihara (2001) Clad Polymer Buffer Rods for Polymer Process Monitoring, Ultrasonics, 39(2): 81–89.

    Article  Google Scholar 

  28. I. Ihara, C.-K. Jen, and D. R. França (1998) Materials Evaluation Using Long Clad Buffer Rods, Proc. IEEE Int. Ultrasonics Symp., Sendai, pp. 803–809.

    Google Scholar 

  29. I. Ihara, C.-K. Jen, and D. R. França (2000) Ultrasonic Imaging, Particle Detection and V(z) Measurements in Molten Zinc Using Focused Clad Buffer Rods, Rev. Sci. Instrum, 71(9): 3579–3586.

    Article  Google Scholar 

  30. I. Ihara, H. Aso, and D. Burhan (2004) In-situ Observation of Alumina Particles in Molten Aluminum Using a Focused Ultrasonic Sensor, JSME International Journal, 47(3): 280–286.

    Article  Google Scholar 

  31. I. Ihara, D. Burhan, and Y. Seda (2005) In situ Monitoring of Solid-Liquid Interface of Aluminum Alloy using a High Temperature Ultrasonic Sensor, Jpn J. App. Phys., Vol.44(6B): 4370–7373.

    Article  Google Scholar 

  32. M. Takahashi and I. Ihara (2008) Ultrasonic Monitoring of Internal Temperature Distribution in a Heated Material, Jpn J. App. Phys., Vol.47(5B): 3894–3898.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ihara, I. (2008). Ultrasonic Sensing: Fundamentals and its Applications to Nondestructive Evaluation. In: Mukhopadhyay, S., Huang, R. (eds) Sensors. Lecture Notes Electrical Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69033-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69033-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69030-6

  • Online ISBN: 978-3-540-69033-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation