The Segmented Overriding Plate and Coupling at the South-Central Chilean Margin (36–42°S)

  • Chapter
The Andes

Abstract

Identifying the parts of subduction zones that are susceptible to great earthquakes is a challenge that warrants considerable attention. In south-central Chile, where the 1960 M w 9.5 Valdivia earthquake occurred, we have combined surface geology and gravity data into a three-dimensional density model that helps to identify trench-parallel changes in fore-arc properties between 36 and 42° S. In light of suggestions that gravity data predict the seismogenic behavior of subduction zones, we use the gravity data and geological observations to separate the fore-arc in this region into three segments.

The northern Arauco-Lonquimay segment, where gravity anomalies are strongly positive, should be characterized by low coupling. In contrast, the plate interface under the Valdivia-Liquiñe and Bahia Mansa-Osorno segments to the south, where anomalies are negative or near-zero, should be highly coupled. The inferred differences in coupling are consistent with the extent of rupture during the Valdivia earthquake, which initiated under the southern part of the Arauco-Lonquimay segment but propagated southwards through the zone of inferred high coupling under the Valdivia-Liquiñe and Bahia Mansa-Osorno segments.

A three-dimensional gravity model of this region, constrained by surface geology and, in part, by independent seismic information, shows that one major control on the changing gravity-anomaly characteristics is the depth to the slab below the fore-arc. The model suggests that a north-to-south increase in the depth to the slab of about 5 km is possible. This increasing depth to the slab (i.e. increasing fore-arc thickness) can account for the inferred increase in coupling under the southern segments. A deeper slab would lead to greater shear stress and an increased coupling force at the plate interface. This increase is a result of: (1) greater normal stress acting on the plate interface induced by a thicker fore-arc, (2) slab buoyancy effects related to plate age (which also decreases from north to south), and (3) a shallower onset of sediment consolidation that increases the rigidity of material at the plate interface, thereby increasing the width of the frictionally coupled (unstably sliding) part of the subduction interface. Differences in fore-arc rheology, reflected in along-strike compositional differences and seismicity patterns, also have an important influence on coupling.

Other parameters that are often invoked to explain coupling differences (e.g. changes in trench sediment, convergence rate and seafloor texture) cannot explain differences in coupling here because these parameters do not change over the length of the trench examined, or they cause an effect that is contrary to the inferences based on gravity anomalies. The inferred coupling differences are also consistent with observed seismicity. In the Arauco-Lonquimay segment, where we infer coupling to be low, prominent seismicity is evident, indicating that the fore-arc is releasing the strain built up during convergence. In the Valdivia-Liquiñe and Bahia Mansa-Osorno segments, where we infer coupling to be high, fore-arc seismicity is limited. This suggests that strain is accumulating as the result of a locked plate interface, although aseismic slip cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen O, Knudsen P (1998) Global marine gravity field from the ERS-1 and Geosat geodetic mission altimetry. J Geophys Res 103(C4):8129–8138

    Article  Google Scholar 

  • Araneda M, Avendaño MS, Götze H-J, Schmidt S, Munoz J, Schmitz M (1999) South central Andes gravity, new data base. 6th International Congress of the Brazilian Geophysical Society

    Google Scholar 

  • Bilek SL, Lay T (1999) Rigidity variations with depth along interpolate megathrust faults in subduction zones. Nature 400:443–446

    Article  Google Scholar 

  • Bohm M (2004) 3-D Lokalbebentomographie der südlichen Anden zwischen 36° und 40°S. PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2005/7/

    Google Scholar 

  • Bohm M, Lüth S, Echtler H, Asch G, Bataille K, Bruhn C, Rietbrock A, Wigger P (2002) The Southern Andes between 36° and 40°S latitude: seismicity and average seismic velocities. Tectonophysics 356:275–289

    Article  Google Scholar 

  • Bürgmann R, Kogan MG, Steblov GM, Hilley G, Levin VE, Apel E (2005) Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J Geophys Res 110: doi 10.1029/2005JB003648

    Google Scholar 

  • Cifuentes IL (1989) The 1960 Chilean Earthquakes. J Geophys Res 94(B1):665–680

    Google Scholar 

  • Cingolani C, Dalla Salda L, Hervé F, Munizaga F, Pankhurst RJ, Parada MA, Rapela CW (1991) The magmatic evolution of northern Patagonia: new impressions of pre-Andean and Andean tectonics. In: Harmon RS, Rapela CW (eds Andean magmatism and its tectonic setting. Geol Soc Am Spec P 265:29–44

    Google Scholar 

  • Conrad CP, Bilek S, Lithgow-Bertelloni C (2004) Great earthquakes and slab pull: interaction between seismic coupling and plateslab coupling. Earth Planet Sci Lett 218:109–122

    Article  Google Scholar 

  • Duhart P, McDonough M, Muñoz J, Martin M, Villeneuve M (2001) El complejo metamórfico Bahía Mansa en la Cordillera Costa del centro-sur de Chile (39°30’–42°00’S): geocronologia K-Ar, 40Ar/39Ar y U-Pb e implicancias en la evolución del margen sur-occidental de Gondwana. Rev Geol Chile 28:179–208

    Google Scholar 

  • England P, Engdahl R, Thatcher W (2004) Systematic variation in the depths of slabs beneath arc volcanoes. Geophys J Int 156:377–408

    Article  Google Scholar 

  • Flüh ER, Kopp H, Schreckenberger B (2002) FS Sonne Cruise Report SO161-1&4, Subduction Processes Off Chile. GEOMAR Report 102

    Google Scholar 

  • Folguera A, Ramos V (2000) Structural control of the Copahue volcano. Tectonics implications for the Quaternary volcanic arc (36°–39°S). Rev Asoc Geol Argentina 55(3):229–244

    Google Scholar 

  • Folguera A, Ramos V, Melnick D (2002) Partición de la deformación en la zona del arco volcánico de los Andes neuquinos (36–39°S) en los últimos 30 millones de años. Rev Geol Chile 29(2):151–165

    Google Scholar 

  • Folguera A, Ramos VA, Melnick D (2003) Recurrencia en el desarrollo de cuencas de inraarco. Cordillera Neuquina (37°30′–38°S). Rev Asoc Geol Argentina 58(1):3–19

    Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass-flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 401–428, this volume

    Google Scholar 

  • Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modeling in gravity and magnetics. Geophysics 53(8):1096–1108

    Article  Google Scholar 

  • Götze H-J, Lahmeyer B, Schmidt S, Strunk S (1994) The lithospheric structure of the Central Andes (20°–26°S) as inferred from quantitative interpretation of regional gravity. In: Reutter K-J, Scheuber E, Wigger P (eds) Tectonics of the Southern Central Andes. Springer-Verlag, Berlin Heidelberg New York, pp 7–21

    Google Scholar 

  • Götze H-J, Alvers M, Goltz G, Kirchner A, Müller A, Schäfer U, Schmidt S, Araneda M, Ugalde H, Chong D, Barrio GL, Lopez N, Omarini R (1996) Group updates gravity database for Central Andes. EOS 77(19):181

    Google Scholar 

  • Götze H-J, Alten M, Burger H, Goni P, Melnick D, Mohr S, Munier K, Ott N, Reutter K, Schmidt S (2006) Data management of the SFB 267 for the Andes — from ink and paper to digital databases. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 539–556, this volume

    Google Scholar 

  • Gräfe K, Glodny J, Seifert W, Rosenau M, Echtler H (2002) Apatite fission track thermochronology of granitoids at the south Chilean active continental margin (37°S–42°S): implications for denudation, tectonics and mass transfer since the Cretaceous. 5th Int Symposium Andean Geodynamics, Toulouse, Extended Abs, pp 275–278

    Google Scholar 

  • Hacker BR, Abers GA (2004) Subduction factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and water contents of minerals and rocks at pressure and temperature. Geochem Geophys Geosyst 5(1): doi 10.1029/2003GC000614

    Google Scholar 

  • Hacker BR, Abers GA, Peacock SM (2003) Subduction factory 1: theoretical mineralogy, density, seismic wave speeds, and H2O content. J Geophys Res 108(B1): doi 10.1029/2001JB001127

    Google Scholar 

  • Hastings DA, Dunbar PK, Elphingstone GM, Bootz M, Murakami H, Maruyama H, Masaharu H, Holland P, Payne J, Bryant NA, Logan TL, Muller JP, Schreier G, MacDonald JS (1999) The Global Land One-kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. National Oceanic and Atmospheric Administration, National Geophysical Data Center, Boulder, Colorado, http://www.ngdc.noaa.gov/mgg/topo/globe.html

    Google Scholar 

  • Hervé F (1977) Petrology of the crystalline basement of the Nahuelbuta Mountains, South-Central Chile. In: Ishikawa T, Aguirre L (eds) Comparative studies on the geology of the Circum-Pacific orogenic belt in Japan and Chile, 1st Report. Japan Soc Prom Sci, Tokyo, pp 1–51

    Google Scholar 

  • Hervé F (1988) Late Paleozoic subduction and accretion in southern Chile. Episodes 11:183–188

    Google Scholar 

  • Hervé F, Munizaga F, Parada MA, Brook M, Pankhurst RJ, Snelling NJ, Drake R (1988) Granitoids of the Coast Range of central Chile: geochronology and geologic setting. J S Am Earth Sci 1:185–194

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455–489

    Article  Google Scholar 

  • Hoffmann-Rothe A, Kukowski N, Dresen G, Echtler H, Oncken O, Klotz J, Scheuber E, Kellner A (2006) Oblique convergence along the Chilean margin: partitioning, margin-parallel faulting and force interaction at the plate interface. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 125–146, this volume

    Google Scholar 

  • Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24(2):217–284

    Google Scholar 

  • Jordan TE, Burns WM, Veiga R, Pángaro F, Copeland P, Kelley S, Mpodozis C (2001) Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes. Tectonics 20(3):308–324

    Article  Google Scholar 

  • Kaizuka S, Matsuda T, Nogami M, Yonekura N (1973) Quaternary tectonics and recent seismic crustal movements in the Arauco Peninsula and its environs, Central Chile. Tokyo Metropolitan University Geographical Reports 8:1–49

    Google Scholar 

  • Kanamori H (1986) Rupture process of subduction-zone earthquakes. Ann Rev Earth Planet Sci Lett 14:293–322

    Article  Google Scholar 

  • Kendrick E, Bevis M, Smalley R, Brooks B, Barriga R, Lauría E, Souto L (2003) The Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131

    Article  Google Scholar 

  • Khazaradze G, Klotz J (2003) Short-and long-term effects of GPS measured crustal deformation rates along the south-central Andes. J Geophys Res 108(B6): doi 10.1029/2002JB001879

    Google Scholar 

  • Klotz J, Abolghasem A, Khazaradze G, Heinze B, Vietor T, Hackney R, Bataille K, Maturana R, Viramonte J, Perdomo R (2006) Long-term signals in the present-day deformation field of the Central and Southern Andes and constraints on the viscosity of the Earth’s upper mantle. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 65–90, this volume

    Google Scholar 

  • Krawczyk C, SPOC Team (2003) Amphibious seismic survey images plate interface at 1960 Chile earthquake. EOS Transact 84(32):301, 304–305

    Google Scholar 

  • Krawczyk CM, Mechie J, Lüth S, Tašárová Z, Wigger P, Stiller M, Brasse H, Echtler HP, Araneda M, Bataille K (2006) Geophysical signatures and active tectonics at the south-central Chilean margin. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 171–192, this volume

    Google Scholar 

  • Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797

    Article  Google Scholar 

  • Lara L, Rodríguez C, Moreno H, Pérez de Arce C (2001) Geocronología K-Ar y geoquímica del volcanismo plioceno superior-pleistoceno en los Andes del sur (39°–42°S). Rev Geol Chile 28(1):67–91

    Google Scholar 

  • Lavenu A, Cembrano J (1999) Compressional and transpressional stress pattern for Pliocene and Quaternary brittle deformation in fore-arc and intra-arc zones (Andes of Central and Southern Chile). J Struct Geol 21:1669–1691

    Article  Google Scholar 

  • Lay T, Schwartz SY (2004) Comment on “Coupling Semantics and Science in Earthquake Research” by Wang K and Dixon T. EOS 85(36):339–340

    Google Scholar 

  • LeRoux JP, Elgueta S (1997) Paralic parasequences associated with Eocene sea-level oscillations in an active margin setting: Trihueco Formation of the Arauco Basin, Chile, Sediment Geol 110(3–4):257–276

    Google Scholar 

  • López-Escobar L (1984) Petrology and chemistry of volcanic rocks of the southern Andes. In: Harmon RS, Barreiro BA (eds) Andean Magmatism, chemical and isotopic constraints. Shiva Publ Co, Cheshire UK, pp 47–71

    Google Scholar 

  • Lu Z, Wyss M (1996) Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions. J Geophys Res 101(B1):803–816

    Article  Google Scholar 

  • Lucassen F, Franz G, Thirlwall MF, Mezger K (1999) Crustal recycling of metamorphic basement: Late Paleozoic granites of the Chilean Coast Range and Precordillera at 22°S. J Petrol 40:1527–1551

    Article  Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vásquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to Recent compositional evolution of the Chilean Pacific margin (36–41°S). J S Am Earth Sci 17:103–119

    Article  Google Scholar 

  • Lüth S, Wigger P, ISSA Research Group (2003) A crustal model along 39°S from a seismic refraction profile-ISSA (2000). Rev Geol Chile 30(1):83–101

    Google Scholar 

  • Martin MW, Kato TT, Rodríguez C, Godoy E, Duhart P, McDonough M, Campos A (1999) Evolution of the late Paleozoic accretionary complex and overlying forearc-magmatic arc, south central Chile (38°–41°S): constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18:582–605

    Article  Google Scholar 

  • McCaffrey RM (1993) On the role of the upper plate in great subduction zone earthquakes. J Geophys Res 98(B7):11953–11966

    Google Scholar 

  • Melnick D, Echtler HP (2006a) Morphotectonic and geologic digital map compilations of the South-Central Andes (36°–42° S). In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 565–568, this volume

    Google Scholar 

  • Melnick D, Echtler HP (2006b) Inversion of forearc basins in South-Central Chile caused by rapid glacial age trench fill. Geology 4(9):709–712

    Article  Google Scholar 

  • Melnick D, Sanchez M, Echtler HP, Pineda V (2003) Geologíca structural de la Isla Mocha, centro-sur de Chile (38°30’S, 74°W): implicancias en la tectónica regional. X Congreso Geológico Chileno, Extended Abstracts

    Google Scholar 

  • Melnick D, Rosenau M, Folguera A, Echtler HP (2006a) Neogene tectonic evolution of the Neuquén Andes western flank (37–39°S). In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am Spec P 407:73–95, doi 10.1130/2006.2407(04)

    Google Scholar 

  • Melnick D, Bookhagen B, Echtler HP, Strecker MR (2006b) Coastal deformation and great subduction earthquakes, Isla Santa María, Chile (37°S). Geol Soc Am Bull 118(9), in press

    Google Scholar 

  • Mishra OP, Zhao D, Umino N, Hasegawa A (2003) Tomography of northeast Japan forearc and its implications for interplate seismic coupling. Geophys Res Lett 30(16): doi 10.1029/2003GL017736

    Google Scholar 

  • Molnar P, England P (1990) Temperatures, heat flux, and frictional stress near major thrust faults. J Geophys Res 95(B4):4833–4856

    Google Scholar 

  • Mordojovich C (1981) Sedimentary basins of Chilean Pacific Offshore. In: Halbouty MT (ed) Energy Resources of the Pacific Region. Am Assoc Petr Geologists, Stud Geol 12:63–82

    Google Scholar 

  • Mpodozis M, Ramos V (1989) The Andes of Chile and Argentina. In: Geology of the Andes and its relation to hydrocarbon and mineral resources. In: Ericksen GE, Pinochet MT, Reinemund JE (eds) Circum-Pacific Council for Energy and Mineral Resources, Earth Sci Ser 11:59–90

    Google Scholar 

  • Müller A (1999) Ein EDV-orientiertes Verfahren zur Berechnung der topographischen Reduktion im Hochgebirge mit digitalen Geländemodellen am Beispiel der Zentralen Anden. Berliner Geowiss Abh B34

    Google Scholar 

  • Müller RD, Roest WR, Royer JY, Gahagan LM, Sclater JG (1997) Digital isochrons of the world’s ocean floor. J Geophys Res 102(B2): 3211–3214

    Article  Google Scholar 

  • Muñoz J, Troncoso R, Duhart P, Cringnola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in South-Central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chile 27(2):177–203

    Google Scholar 

  • Nelson R, Manley W (1992) Holocene coseismic and aseismic uplift of the Isla Mocha, South-Central Chile. Quaternary International 15/16:61–76

    Article  Google Scholar 

  • Nishimura T, Hirasawa T, Miyazaki S, Sagiya T, Tada T, Miura S, Tanaka K (2004) Temporal change of interplate coupling in northeastern Japan during 1995–2002 estimated from continuous GPS observations. Geophys J Int 157:901–916

    Article  Google Scholar 

  • NOAA (1988) Data Announcement 88-MGG-02, Digital relief of the surface of the Earth. National Oceanic and Atmosphere Administration, National Geophysical Data Center, Boulder, Colorado

    Google Scholar 

  • Oleskevich DA, Hyndman RD, Wang K (1999) The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, South Alaska, SW Japan and Chile. J Geophys Res 104(B7):14965–14991

    Article  Google Scholar 

  • Pacheco JF, Sykes LR, Scholz C (1993) Nature of seismic coupling along simple plate boundaries of the subduction type. J Geophys Res 98(B8):14133–14159

    Google Scholar 

  • Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile. J Geol Soc 156:673–694

    Google Scholar 

  • Pineda V (1986) Evolución paleogeográfica de la cuenca sedimentaria Cretácico-Terciaria de Arauco. In: Frutos J, Oyarzún R, Pincheira M (eds) Geología y Recursos Minerales de Chile, Tomo 1. Universidad de Concepción, pp 375–390

    Google Scholar 

  • Plafker G, Savage JC (1970) Mechanism of the Chilean earthquake of May 21 and 22, 1960. Geol Soc Am Bull 81:1001–1030

    Google Scholar 

  • Ramos VA, Wienecke S, Götze H-J (2002) El basamento de la Cuenca Neua y regions adjacentes: datos gravimétricos preliminares. XV Congreso Geológico Argentino 2002, El Calafate, Santa Cruz, Argentina. Published on CDROM, ISBN 987-20190-1-0

    Google Scholar 

  • Rapela CW, Kay SM (1988) Late Paleozoic to Recent magmatic evolution of northern Patagonia. Episodes 11:175–182

    Google Scholar 

  • Reichert C, et al. (2002) Cruise Report SONNE Cruise 161 Leg 2&3, “Subduction Processes Off Chile”. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Reuther CD, Potent S, Bonilla R (2003) Crustal stress history and geodynamic processes of a segmented active plate margin, southcentral Chile: the Arauco Bío-Bío trench arc system. 10th Chilean Geological Congress, Concepción, Chile, Extended Abstracts

    Google Scholar 

  • Reyners M (1998) Plate coupling and the hazard of large subduction thrust earthquakes at the Hikurangi subduction zone, New Zealand. N Zealand J Geol Geophys 41(4):343–354

    Google Scholar 

  • Rosenau M, Melnick D, Echtler H (2006) Kinematic constraints on intra-arc shear and strain partitioning in the Southern Andes between 38°S and 42°S latitude. Tectonics 25(4), TC4013, doi 10.1029/2005TC001943

    Google Scholar 

  • Ruegg JC, Campos J, Madariaga R, Kausel E, De Chabalier JB, Armijo R, Dimitrov D, Georgiev I, Barrientos S (1996) The Mw=8.1 Antofagasta (North Chile) Earthquake of July 30 (1995) first results from teleseismic and geodetic data. Geophys Res Lett 23(9): 917–920

    Article  Google Scholar 

  • Ruff LJ (1989) Do trench sediments affect great earthquake occurrence in subduction zones? Pure Appl Geophys 129:263–282

    Article  Google Scholar 

  • Ruff LJ, Kanamori H (1983) Seismic coupling and uncoupling at subduction zones. Tectonophysics 99:99–117

    Article  Google Scholar 

  • Schmidt S, Götze H-J (1998) Interactive visualization and modification of 3D-models using GIS-functions. Phys Chem Earth 23(3): 289–295

    Article  Google Scholar 

  • Schmidt S, Götze H-J (2006) Bouguer and isostatic maps of the Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 559–562, this volume

    Google Scholar 

  • Scholz CH (1990) The Mechanics of Earthquakes and Faulting. Cambridge University Press

    Google Scholar 

  • Scholz CH (1998) Earthquakes and friction laws. Nature 391:37–42

    Article  Google Scholar 

  • Scholz CH, Campos J (1995) On the mechanism of seismic decoupling and back arc spreading at subduction zones. J Geophys Res 100(B11):22103–22115

    Article  Google Scholar 

  • Scholz CH, Small C (1997) The effect of seamount subduction on seismic coupling. Geology 24(6):487–490

    Article  Google Scholar 

  • Schurr B, Asch G, Rietbrock A, Trumbull R, Haberland C (2003) Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet Sci Lett 215:105–119

    Article  Google Scholar 

  • Seifert W, Rosenau M, Echtler H (2005) Crystallisation depths of granitoids of South Central Chile estimated by Al-in-hornblende geobarometry: implications for mass transfer processes along the active continental margin. In Miller H (ed) Contributions to Latin American Geology. Schweizerbart, pp 115–127

    Google Scholar 

  • SEGEMAR (1998) Mapa geológico de la Republica Argentina. Servicio Geológico Minero Argentina, Buenos Aires, Argentina

    Google Scholar 

  • SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital, N°4, CD-ROM version 1.0. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, Santiago, Chile

    Google Scholar 

  • Sobolev SV, Babeyko AY (1994) Modeling of mineralogical composition, density and elastic wave velocities in anhydrous magmatite rocks. Surveys Geophys 15:515–544

    Article  Google Scholar 

  • Song TA, Simons M (2003) Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science 301: 630–633

    Article  Google Scholar 

  • Stern C (1989) Pliocene to present migration of the volcanic front, Andean Southern Volcanic Front. Rev Geol Chile 16(2): 145–162

    Google Scholar 

  • Suárez M, Emparan C (1997) Hoja Curacautín, Regiones de la Araucanía y del BioBio. Carta Geol. de Chile 71, escala 1:250000. Servicio Nacional de Geología y Minería, Santiago, Chile

    Google Scholar 

  • Tašárová Z (2004) Gravity data analysis and interdisciplinary 3D modelling of a convergent plate margin (Chile, 36–42°S). PhD thesis, Freie Universität Berlin, http://www.diss.fu-berlin.de/2005/19/indexe.html

    Google Scholar 

  • Tašárová Z (submitted) An improved gravity database and a threedimensional density model of a convergent plate margin (Chile, 36°–42 °S). Geophys J Int

    Google Scholar 

  • Tassara A, Yáñez G (2003) Relación entre el espesor elástico de la litosfera y la segmentación tectónica del margen andino (15°–47°). Rev Geol Chile 30(2):159–186

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics: application of continuum physics to geological problems. John Wiley, Hoboken NJ

    Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru-Chile trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes — active subduction orogeny. Frontiers in Earth Science Series, Vol 1. Springer-Verlag, Berlin Heidelberg New York, pp 193–216, this volume

    Google Scholar 

  • Wang K, Dixon T (2004) Coupling semantics and science in earthquake research. EOS 85(18):180

    Google Scholar 

  • Wang K, He J (1999) Mechanics of low-stress forearcs: Nankai and Cascadia. J Geophys Res 104(B7):15191–15205

    Article  Google Scholar 

  • Wang K, Suyehiro K (1999) How does plate coupling affect crustal stresses in Northeast and Southwest Japan? Geophys Res Lett 26(15):2307–2310

    Article  Google Scholar 

  • Wells RE, Blakely RJ, Sugiyama Y, Scholl DW, Dinterman PA (2003) Basin-centred asperities in great subduction zone earthquakes: a link between slip, subsidence, and subduction erosion. J Geophys Res 108(B10): doi 10.1029/2002JB002072

    Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of Generic Map** Tools released. EOS 79(47):579

    Article  Google Scholar 

  • Wienecke S (2002) Homogenisation and interpretation of the gravity field along the SALT-traverse between 36°–42°S. Diploma thesis, Freie Universität Berlin (in German)

    Google Scholar 

  • Willner AP, Hervé F, Massonne HJ (2000) Mineral chemistry and pressure-temperature evolution of two contrasting high-pressure-low-temperature belts in the Chonos Archipelago, southern Chile. J Petrol 41:309–330

    Article  Google Scholar 

  • Willner AP, Glodny J, Gerya TV, Godoy E, Massonne HJ (2004) A counterclockwise PTt-path of high pressure-low temperature rocks from the Coastal cordillera accretionary complex of South Central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310

    Article  Google Scholar 

  • Yáñez G, Cembrano J (2004) Role of viscous plate coupling in the late Tertiary Andean tectonics. J Geophys Res 109: doi 10.1029/2003JB002494

    Google Scholar 

  • Yamanaka Y, Kikuchi M (2004) Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. J Geophys Res 109: doi 10.1029/2003JB002683

    Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the central Andes and its geodynamic implications. Earth Planet Sci Lett 199:389–402

    Article  Google Scholar 

  • Yuan X, Asch G, Bataille K, Bock G, Bohm M, Echtler H, Kind R, Oncken O, Wöhlbern I (2006) Deep seismic images of the southern Andes. In: Kay SM, Ramos VA (eds) Evolution of an Andean margin: a tectonic and magmatic view from the Andes to the Neuquén Basin (35°–39° S lat). Geol Soc Am Spec P 407:61–72, doi 10.1130/2006.2407(03)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hackney, R.I. et al. (2006). The Segmented Overriding Plate and Coupling at the South-Central Chilean Margin (36–42°S). In: Oncken, O., et al. The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-48684-8_17

Download citation

Publish with us

Policies and ethics

Navigation