Carbon and Nutrient Fluxes Within and Between Mycorrhizal Plants

  • Chapter
Mycorrhizal Ecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 157))

Abstract

Mycorrhizal fungi are involved in the uptake of nutrients in exchange for C from host plants, and possibly in the transfer of C and nutrients between plants. Ecto-mycorrhizal fungi (EMF) increase uptake rates of nutrients by a variety of mechanisms, including increased physical access to soil, changes to mycorrhizosphere or hyphosphere chemistry, and alteration of the bacterial community in the mycorrhizosphere. They influence mycorrhizosphere chemistry through release of organic acids and production of enzymes. Movement of nutrients within an ecto-mycorrhizal (EM) mycelial network, as well as exchange of C and nutrients between symbionts, appear to be regulated by source-sink relationships. Estimates of the quantity of plant C partitioned belowground (to roots and EMF) varies widely (40–73%) depending on the methodology used and ecosystem studied, and is affected by several factors such as the identity of plant and fungal species, plant nutrient content, and EM age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103: 507 - 514

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants. V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112: 61 - 68

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Finlay RD, Read DJ (1986) The role of proteins in the nitrogen nutrition of ecto-mycorrhizal plants. II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103: 495 - 506

    Article  CAS  Google Scholar 

  • Amaranthus MP, Perry DA (1994) The functioning of mycorrhizal fungi in the field: linkages in space and time. Plant Soil 159: 133 - 140

    Google Scholar 

  • Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn. seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ecto-mycorrhizal mycelium. New Phytol 130: 231 - 242

    Article  Google Scholar 

  • Arocena JM, Glowa KR (2000) Mineral weathering in ectomycorrhizosphere of subalpine fir (Abies lasiocarpa ( Hook.) Nutt.) as revealed by soil solution composition. For Ecol Manage 133: 61-70

    Google Scholar 

  • Arocena JM, Glowa KR, Massicotte HB (1999) Chemical and mineral composition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook) Nutt. in the Ae horizon of a luvisol. Can J Soil Sci 79: 25-35

    Google Scholar 

  • Ashford AE, Ryde S, Barrow KD (1994) Demonstration of a short chain polyphosphate in Pisolithus tinctorius and the implications for phosphorus transport. New Phytol 126: 239 - 247

    Article  CAS  Google Scholar 

  • BA AM, Sanon KB, Duponnois R, Dexheimer J (1999) Growth response of Afzelia africana Sm. seedlings to ecto-mycorrhizal inoculation in a nutrient-deficient soil. Mycorrhiza 9: 91 - 95

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1995a) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants V. The foraging behaviour of ecto-mycorrhizal mycelium and the translocation of nutrients from exploited organic matter. New Phytol 130: 401-409

    Google Scholar 

  • Bending GD, Read DJ (1995b) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus ( Fr.) Fr. New Phytol 130: 411-417

    Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ecto-mycorrhizal and ericoid mycorrhizal fungi. Myco Res 101: 1348 - 1354

    Article  CAS  Google Scholar 

  • Bergelson JM, Crawley MJ (1988) Mycorrhizal infection and plant species diversity. Nature 334: 282

    Article  Google Scholar 

  • Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plant 82: 423 - 432

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Schreiner RP, Mihara KL, McDaniel H (1996) Mycorrhiza, biocides, and biocontrol. 2. Mycorrhizal fungi enhance weed control and crop growth in a soybean-cocklebur association treated with the herbicide bentazon. Appl Soil Ecol 3: 205-214

    Google Scholar 

  • Bidartondo MI, Kretzer AM, Pine EM, Bruns TD (2000) High root concentration and uneven ecto-mycorrhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Amer J Bot 87: 1783 - 1788

    Article  CAS  Google Scholar 

  • Bjorkman E (1960) Monotropa hypopitys L. - an epiparasite on tree roots. Phys Plant 13:308-327

    Google Scholar 

  • Bonello P, Bruns TD, Gardes M (1998) Genetic structure of a natural population of the EMF Suillus pungens. New Phytol 138: 533 - 542

    Article  CAS  Google Scholar 

  • Borchers SL, Perry DA (1990) Growth and ecto-mycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances from pioneering hardwoods in southwest Oregon clear-cuts. Can J For Res 20: 712 - 721

    Article  Google Scholar 

  • Botton B, Chalot M (1995) Nitrogen assimilation: enzymology in ecto-mycorrhiza. In: Hock B, Varma A (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 325 - 363

    Google Scholar 

  • Bradley RL, Fyles JW (1995) Growth of paper birch ( Betula papyrifera) seedlings increases soil available C and microbial acquisition of soil-nutrients. Soil Biol Biochem 27: 1565-1571

    Google Scholar 

  • Brandes B, Godbold DL, Kuhn AJ, Jentschke G (1998) Nitrogen and phosphorus acquisition by the mycelium of the ecto-mycorrhizal fungus Paxillus involutus and its effect on host nutrition. New Phytol 140: 735 - 743

    Article  CAS  Google Scholar 

  • Brown MS, Ferrera-Cerrato, Bethlenfalvay GJ (1992) Mycorrhiza-mediated nutrient distribution between associated soybean and corn plants evaluated by the Diagnosis and Recommendation Integrated System ( DRIS ). Symbiosis 12: 83-94

    Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of ecto-mycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71: 433 - 443

    Article  Google Scholar 

  • Backing H, Heyser W (1994) The effect of ecto-mycorrhizal fungi on Zn uptake and distribution in seedlings of Pinus sylvestris L. Plant Soil 167: 203 - 212.

    Article  Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ecto-mycorrhizal and saprotrophic rhizomorphs. Myco Res 96: 135 - 141

    Article  CAS  Google Scholar 

  • Cairney JWG, Alexander IJ (1992) A study of spruce (Picea sitchensis (Bong.) Carr.) ectomycorrhizas. II Carbohydrate allocation in ageing Picea sitchensis/Tylospora fibrillosa ( Burt.) Donk ecto-mycorrhizas. New Phytol 122: 153-158

    Google Scholar 

  • Cairney JWG, Burke RM (1996) Physiological heterogeneity within fungal mycelia: an important concept for a functional understanding of the ecto-mycorrhizal symbiosis. New Phytol 134: 685 - 695

    Article  Google Scholar 

  • Cairney JWG, Ashford AE, Allaway WG (1989) Distribution of photosynthetically fixed carbon within root systems of Eucalyptus pilularis plants ecto-mycorrhizal with Pisolithus tinctorius. New Phytol 112: 495 - 500

    Article  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ecto-mycorrhizal fungi and ecto-mycorrhizas. FEMS Microbiol Rev 22: 21 - 44

    Article  PubMed  CAS  Google Scholar 

  • Chang TT, Li CY (1998) Weathering of limestone, marble, and calcium phosphate by ecto-mycorrhizal fungi and associated microorganisms. Taiwan J For Sci 13: 85 - 90

    Google Scholar 

  • Chiariello N, Hickman JC, Mooney HA (1982) Endo-mycorrhizal role for interspecific transfer of phosphorus in a community of annual plants. Science 217: 941 - 943

    Article  PubMed  CAS  Google Scholar 

  • Cliquet JB, Stewart GR (1993) Ammonia assimilation in Zea mays L. infected with a vesicular-arbuscular fungus Glomus fasciculatum. Plant Physiol 101: 685 - 671

    Google Scholar 

  • Colpaert JV, Van Laere A (1996) A comparison of the extracellular enzyme activities of two ecto-mycorrhizal and leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytol 134: 133 - 141

    Article  CAS  Google Scholar 

  • Colpaert JV, Van Laere A, Van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings. Tree Phys 16: 787 - 793

    Article  CAS  Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ecto-mycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32: 489 - 496

    Article  CAS  Google Scholar 

  • Cromack K Jr, Sollins P, Grausten WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11: 463 - 468

    Article  CAS  Google Scholar 

  • Cullings KW, Szaro TM, Bruns TD (1996) Evolution of extreme specialization within a lineage of ecto-mycorrhizal epiparasites. Nature 379: 63 - 66

    Article  CAS  Google Scholar 

  • Cumming JR (1993) Growth and nutrition of nonmycorrhizal and mycorrhizal pitch pine (Pinus rigida) seedlings under phosphorus limitation. Tree Physiol 13: 173 - 187

    Article  PubMed  CAS  Google Scholar 

  • Dighton J (1983) Phosphatase production by mycorrhizal fungi. Plant Soil 71: 455 - 462

    Article  CAS  Google Scholar 

  • Dighton J (1991) Acquisition of nutrients from organic resources by mycorrhizal autotrophic plants. Experentia 47: 362 - 369

    Article  Google Scholar 

  • Dhillion SS (1992) Evidence for host mycorrhizal preference in native grassland species. Mycol Res 96: 359 - 362

    Article  Google Scholar 

  • Downes GM, Alexander IJ, Cairney JWG (1992) A study of spruce (Picea sitchensis (Bong.) Carr.) ecto-mycorrhizas. I. Morhphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa (Burt.) Donk and Paxillus involutus ( Batsch ex Fr.) Fr. New Phytol 122: 141-152

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1987) Interactions between the ecto-mycorrhizal fungus Paxillus involutus and Pinus resinosa induces resistance to Fusarium oxysporum. Can J Bot 66: 558 - 562

    Article  Google Scholar 

  • Dupponois R, Bâ AM (1999) Growth stimulation of Acacia mangium Willd. by Pisolithus sp. in some Senegalese soils. For Ecol Manag 119: 209 - 215

    Article  Google Scholar 

  • Durall DM, Todd AW, Trappe JM (1994a) Decomposition of 14C-labelled substrates by ecto-mycorrhizal fungi in association with Douglas-fir. New Phytol 127: 725 - 729

    Article  CAS  Google Scholar 

  • Durall DM, Marshall JD, Jones MD, Crawford R, Trappe JM (1994b) Morphological changes and photosynthate allocation in ageing Hebeloma crustuliniforme (Bull.) Quel. and Laccaria bicolor (Maire) Orton mycorrhizas of Pinus ponderosa Dougl. ex. Laws. New Phytol 127: 719-724

    Google Scholar 

  • Durall DM, Jones MD, Tinker PB (1994 c) Allocation of 14C-carbon in ecto-mycorrhizal willow. New Phytol 128: 109 - 114

    Google Scholar 

  • Durall DM, Jones MD, Wright EF, Kroeger P, Coates KD (1999) Species richness of ectomycorrhizal fungi in cutblocks of different sizes in the Interior Cedar-Hemlock forests of northwestern British Columbia: sporocarps and ecto-mycorrhiza. Can J For Res 29: 1322 - 1332

    Article  Google Scholar 

  • Eason WR (1988) The cycling of phosphorus from dying roots including the role of mycorrhizas. PhD Thesis, University of Bristol

    Google Scholar 

  • Eason WR, Newman EI (1990) Rapid cycling of nitrogen and phosphorus from dying roots of Lolium perenne. Oecologia 82: 432 - 436

    Article  Google Scholar 

  • Eason WR, Newman EI, Chuba PN (1991) Specificity of interplant cycling of phosphorus: the role of mycorrhizas. Plant Soil 137: 267 - 274

    Article  CAS  Google Scholar 

  • Edwards NT, Harris WF (1977) Carbon cycling in mixed deciduous forest floor. Ecology 58: 431 - 437

    Article  CAS  Google Scholar 

  • Egger KN (1995) Molecular analysis of ecto-mycorrhizal fungal communities. Can J Bot 73 [Suppl]: S1415 - S1422

    Article  CAS  Google Scholar 

  • Eissenstat DM (1990) A comparison of phosphorus and nitrogen transfer between plants of different phosphorus status. Oecologia 82: 342 - 347

    Article  Google Scholar 

  • Eissenstat DM, Newman EI (1990) Seedling establishment near large plants: effects of vesicular-arbuscular mycorrhizas on the intensity of plant competition. Funct Ecol 4: 95 - 99

    Article  Google Scholar 

  • Ek H (1997) The influence of nitrogen fertilization on the carbon economy of Paxillus invoulutus in ecto-mycorrhizal association with Betula pendula. New Phytol 135: 133 - 142

    Article  CAS  Google Scholar 

  • Ekblad A, Huss-Danell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ecto-mycorrhiza. New Phytol 131: 453 - 459

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. I. Translocation of 14C-labelled carbon between plants interconnected by a common mycelium. New Phytol 103: 143 - 156

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103: 157-165

    Google Scholar 

  • Finlay RD, Söderström B (1989) Mycorrhizal mycelia and their role in soil and plant communities. In: Clarholm M, Bergström (eds) Ecology of arable land, perspectives and challenges. Development in plant and soil sciences, vol39. Kluwer Academic Publishers, Dordrecht, pp 139 - 148

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1989) Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ecto-mycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113: 47 - 55

    Article  CAS  Google Scholar 

  • Finlay RD, Frostegärd A, Sonnerfeldt AM (1992) Utilisation of organic and inorganic nitrogen sources by ecto-mycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 131: 443 - 451

    Google Scholar 

  • Fitter AH, Graves JD, Watkins NK, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12: 406 - 412

    Article  Google Scholar 

  • Fitter AH, Hodge A, Daniell TJ, Robinson D (1999) Resource sharing in plant-fungus communities: did the carbon move for you? Tree 14: 70 - 71

    PubMed  Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J For Res 9: 245 - 256

    Article  Google Scholar 

  • Francis R, Read DJ (1984) Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature 307: 53 - 56

    Article  CAS  Google Scholar 

  • Frey B, Schüepp H (1992) Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol 122: 447 - 454

    Article  CAS  Google Scholar 

  • Frey B, Schüepp H (1993) The role of vesicular-arbuscular ( VA) mycorrhizal fungi in facilitating inter-plant nitrogen transfer. Soil Biol Biochem 25: 651-658

    Google Scholar 

  • Gange AC, Brown VK, Sinclair LM (1993) Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct Ecol 7: 616 - 622

    Article  Google Scholar 

  • Giller KE, Ormesher J, Awah FM (1991) Nitrogen transfer from Phaesolus bean to inter-cropped maize measured using 15N-enrichment and 15N-isotope dilution methods. Soil Biol Biochem 4: 339 - 346

    Article  Google Scholar 

  • Gramss G, Ziegenhagen D, Sorge S (1999) Degradation of soil humic extract by wood-and soil-associated fungi, bacteria, and commercial enzymes. Micro Ecol 37: 140 - 151

    Article  CAS  Google Scholar 

  • Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C (1997) Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil 192: 153 - 159

    Article  CAS  Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ecto-mycorrhizal mats in forest soils. Soil Biol Biochem 26: 331 - 337

    Article  CAS  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328: 420 - 422

    Article  Google Scholar 

  • Hagerman SM, Sakakibara SM, Durall DM (2001) The potential for woody understory plants to provide refuge for ecto-mycorrhizal inoculum at an Interior Douglas-fir forest after clear-cut logging. Can J For Res 31: 711 - 721

    Article  Google Scholar 

  • Hamel C, Smith DL (1991) Interspecific N-transfer and plant development in a mycorrhizal field-grown mixture. Soil Biol Biochem 23: 661 - 665

    Article  Google Scholar 

  • Hamel C, Smith DL (1992) Mycorrhizal-mediated 15N transfer from soybean to corn in field-grown intercrops: effect of component crop spatial relationships. Soil Biol Biochem 24: 499 - 501

    Article  Google Scholar 

  • Hamel C, Barrantes-Cartín, Furlan V, Smith DL (199la) Endomycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138: 33 - 40

    Google Scholar 

  • Hamel C, Furlan V, Smith DL (199 lb) N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil 133: 177 - 185

    Google Scholar 

  • Hamel C, Nesser C, Barrantes-Cartín, Smith DL (1991 c) Endomycorrhizal fungal species mediate 15N transfer from soybean to maize in non-fumigated soil. Plant Soil 138: 41 - 47

    Google Scholar 

  • Hamel C, Furlan V, Smith DL (1992) Mycorrhizal effects on interspecific plant competition and nitrogen transfer in legume-grass mixtures. Crop Sci 32: 991 - 996

    Article  CAS  Google Scholar 

  • Hampp R, Schaeffer C (1995) Mycorrhiza-carbohydrate and energy metabolism. In: Varma A, Hock B (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 267 - 296

    Google Scholar 

  • Hampp R, Wiese J, Mikolajewski S, Nehls U (1999) Biochemical and molecular aspects of C/N interaction in ecto-mycorrhizal plants: an update. Plant Soil 215: 103 - 113

    Article  CAS  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra-and interspecific neighbour interactions among co-occurring prairie grasses. J Ecol 81: 787 - 795

    Article  Google Scholar 

  • Hatano R, Jwanga K, Okajima H, Sakuma T (1988) Relationship between the distribution of soil macropores and root elongation. Soil Sci Plant Nutr 34: 535 - 546

    Article  Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108: 417 - 423

    Article  Google Scholar 

  • Heap AJ, Newman EI (1980) Links between roots by hyphae of vesicular-arbuscular mycorrhizas. New Phytol 85: 169 - 171

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young J (1998) Ploughing up the wood-wide web. Nature 6692: 431

    Article  Google Scholar 

  • Hildebrand EE (1994) The heterogeneous distribution of mobile ions in the rhizosphere of acid forest soils: facts, causes, and consequences. J Environ Sci Health A29: 19731992

    Google Scholar 

  • Hirrel MC, Gerdemann JW (1979) Enhanced carbon transfer between onions infected

    Google Scholar 

  • with a vesicular-arbuscular mycorrhizal fungus. New Phytol 83:731-738

    Google Scholar 

  • Hodge A (1996) Impact of elevated CO, on mycorrhizal associations and implications for

    Google Scholar 

  • plant growth. Biol Fertil Soils 23:388-398

    Google Scholar 

  • Högberg P (1989) Growth and nitrogen inflow rates in mycorrhizal and non-mycorrhizal seedlings of Pinus sylvestris. For Ecol Manage 28: 7 - 17

    Article  Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ecto-mycorrhizal types in a mixed stand of Douglas-fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139: 331 - 339

    Article  Google Scholar 

  • Horton TR, Bruns TD, Parker VT (1999) Ecto-mycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77: 93102

    Google Scholar 

  • Ikram A, Jensen ES, Jakobsen I (1994) No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biol Biochem 26: 1541 - 1547

    Article  CAS  Google Scholar 

  • Ingestad T, Âgren GI (1992) Theories and methods on plant nutrition and growth. Physiol Plant 84: 177 - 184

    Article  CAS  Google Scholar 

  • Javelle A, Chalot M, Botton B (1999) Ammonium transport by the ecto-mycorrhizal fungi Paxillus involutus and ecto-mycorrhiza. Dynamics of Physiological Processes in Woody Roots. 2nd International Symposium Nancy, France. Programme and abstracts, p 120

    Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder J, Becker S, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Plant Soil 220: 243 - 246

    Article  CAS  Google Scholar 

  • Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28: 73 - 81

    CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere - a critical review. Plant Soil 205:25-44 Jones MD, Hutchinson TC (1988) Nickel toxicity in mycorrhizal birch seedlings infected

    Google Scholar 

  • with Lactarius rufus or Scleroderma flavidum. Effects on growth, photosynthesis, res-

    Google Scholar 

  • piration and transpiration. New Phytol 108:451-459

    Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and production of extramatrical hyphae by two types of willow ecto-mycorrhizas at different soil phosphorus levels. New Phytol 115: 259 - 267

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1991) Fluxes of carbon and phosphorus between symbionts in willow ecto-mycorrhizas and their changes with time. New Phytol 119: 99 - 106

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Harniman SMK, Classen DC, Simard SW (1997) Ecto-mycorrhizal diversity on Betula papyrifera and Pseudotsuga menziesii seedlings grown in the greenhouse or outplanted in single-species and mixed plots in southern British Columbia. Can J For Res 28: 1872 - 1889

    Article  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1998) A comparison of arbuscular and ecto-mycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140: 125 - 134

    Article  Google Scholar 

  • Jordy MN, Azémar-Lorentz S, Brun A, Botton B, Pargney JC (1998) Cytolocalization of glycogen, starch, and other insoluble polysaccharides during ontogeny of Paxillus involutus-Betula pendula ecto-mycorrhizas. New Phytol 140: 331 - 341

    Article  CAS  Google Scholar 

  • Jongmans A, Van Breemen N, Lunström U, Van Hees PW, Finlay R, Srinivasan M, Unes-tam T, Giesler R, Melkerud P, Olsson M (1997) Rock-eating fungi. Nature 389: 682 - 683

    Article  CAS  Google Scholar 

  • Jumpponen A (1999) Spatial distribution of discrete RAPD phenotypes of a root endophytic fungus, Phialocephala fortinii, at a primary successional site on a glacier forefront. New Phytol 141: 333 - 344

    Article  Google Scholar 

  • Karabaghli-Degron C, Scotta B, Bonnet M, Gay G, LeTacon F (1998) The auxin transport inhibitor 2,3,5-triidobenzoic acid (TIBA) inhibits the stimulation of in vitro lateral root formation and the colonization of the tap-root cortex of Norway spruce (Picea abies) seedlings by the ecto-mycorrhizal fungus Laccaria bicolor. New Phytol 140: 723 - 733

    Article  CAS  Google Scholar 

  • Kârén 0, Nylund J-E (1997) Effects of ammonium sulphate on the community structure and biomass of ecto-mycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Can J Bot 75: 1628 - 1642

    Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Tree 12: 139 - 143

    PubMed  CAS  Google Scholar 

  • Kielland K (1994) Amino acid absorption by arctic plants: implications for plant nutrition and nutrient cycling. Ecology 75: 2373 - 2383

    Article  Google Scholar 

  • Kirk GJD (1999) A model of phosphate solubilization by organic anion excretion from plant roots. Eur J Soil Sci 50: 369 - 378

    Article  CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB (ed) Soil microbial ecology - applications in agricultural and environmental management. Dekker, New York, pp 255 - 274

    Google Scholar 

  • Koide R, Elliott G (1989) Cost, benefit and efficiency of the vesicular-arbuscular mycorrhizal symbiosis. Funct Ecol 3: 252 - 255

    Google Scholar 

  • Kranabetter JM, Hayden S, Wright EF (1999) A comparison of ecto-mycorrhiza communities from three conifer species planted on forest gap edges. Can J Bot 77: 1193 - 1198

    Google Scholar 

  • Kretzer AM, Bidartondo MI, Grubisha LC, Spatafora JW, Szaro TM, Bruns TD (2000) Regional specialization of Sarcodes sanguinea (Ericaceae) on a single fungal symbiont from the Rhizopogon ellenae ( Rhizopogonaceae) species complex. Am J Bot 87: 1778-1782

    Google Scholar 

  • Kytöviita MM, Sarjala T (1997) Effects of defoliation and symbiosis on polyamine levels in pine and birch. Mycorrhiza 7: 107 - 111

    Article  Google Scholar 

  • Lapeyrie F, Picatto C, Gerard J, Dexheimer J (1990) T.E.M. study of intracellular and extracellular calcium oxalate accumulation by ecto-mycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis 9: 163 - 166

    Google Scholar 

  • Leake JR (1994) The biology of mycoheterotrophic (saprophytic) plants. New Phytol 127: 171 - 216

    Article  Google Scholar 

  • Leake JR, Donnelly DP, Saunders EM, Read DJ, Boddy L (1999) Rates and quantities of carbon flux to ecto-mycorrhizal mycelium following 4C pulse labelling of tree

    Google Scholar 

  • seedlings. Dynamics of Physiological Processes in Woody Roots. 2nd International Symposium, 26-30 Sept 1999, Nancy, France. Programme and abstracts, p30

    Google Scholar 

  • Ledgard SF (1991) Transfer of fixed nitrogen from white clover to associated grasses in swards grazed by dairy cows, estimated using 15N methods. Plant Soil 131: 215 - 223

    Article  CAS  Google Scholar 

  • Leprince F, Quiquampoix H (1996) Extracellular enzyme activity in soil - effect of pH and ionic strength on the interaction with montmorillonite of two acid phosphatases secreted by the ecto-mycorrhizal fungus Hebeloma cylindrosporum. Eur J Soil Sci 47: 511 - 522

    Article  CAS  Google Scholar 

  • Lewis DH (1976) Interchange of metabolites in biotrophic symbioses between angiosperms and fungi. In: Sutherland N (ed) Botany. Perspectives in experimental biology, vol 2. Pergamon Press, Oxford, pp 207 - 219

    Google Scholar 

  • Lewis DH, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. III. Movement of sugars between host and fungus. New Phytol 64: 256-269

    Google Scholar 

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ecto-mycorrhizal fungi. Biol Fertil Soils 15: 259 - 267

    Article  CAS  Google Scholar 

  • Li CY, Massicote HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ecto-mycorrhiza. Plant Soil 140: 35 - 40

    Article  CAS  Google Scholar 

  • Liu G, Chambers SM, Cairney JWG (1998) Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens. New Phytol 140: 145 - 154

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner H (1996) Mineral nutrient acquisition in nonmycorrhizal and mycorrhizal plants. Phyton 36: 61 - 68

    Google Scholar 

  • Mârtensson AM, Rydberg I, Vestberg M (1998) Potential to improve transfer of N in intercropped systems by optimising host-endophyte combinations. Plant Soil 205: 57 - 66

    Google Scholar 

  • Martin F, Ramstedt M, Soderhall K (1987) Carbon and nitrogen metabolism in ectomycorrhizal fungi and ecto-mycorrhizas. Biochimie 69: 569 - 581

    Article  PubMed  CAS  Google Scholar 

  • Martin F, Lapeyrie F, Tagu D (1997) Altered gene expression during ecto-mycorrhizal development. Mycota 5: 223 - 242

    Google Scholar 

  • Martin RC, Voldeng HD, Smith DL (1991) Nitrogen transfer from nodulating soybean [Glycine max (L.) Merr.] to corn (Zea mays L.) and non-nodulating soybean in inter-crops: direct 15N labelling methods. New Phytol 117: 233 - 241

    Article  CAS  Google Scholar 

  • Martin RC, Eagelsham RJ,Voldeng HD, Smith SL (1995) Factors affecting nitrogen benefit from soybean (Glycine max (L.) Merr. CV Lee) to interplanted corn (Zea mays L. CV Co-op S259). Environ Exp Bot 35: 497 - 505

    CAS  Google Scholar 

  • Martins MA (1993) The role of the external mycelium of arbuscular mycorrhizal fungi in the carbon transfer process between plants. Mycol Res 97: 807 - 810

    Article  Google Scholar 

  • Massicotte HB, Molina R, Luoma DL, Smith JE (1994) Biology of the ecto-mycorrhizal genus, Rhizopogon. II. Patterns of host-fungus specificity following spore inoculation of diverse hosts grown in monoculture and dual culture. New Phytol 126: 677-690

    Google Scholar 

  • Massicotte HB, Molina R, Tackaberry LE, Smith JE, Amaranthus MP (1999a) Diversity and host specificity of ecto-mycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77: 1053 - 1076

    Google Scholar 

  • Massicotte HB, Melville LH, Peterson RL, Unestam T (1999b) Comparative studies of ecto-mycorrhiza formation in Alnus glutinosa and Pinus resinosa with Paxillus involutus. Mycorrhiza 8: 229 - 240

    Article  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94: 120 - 122

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2000a) Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol 145: 523 - 537

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000b) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ecto-mycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145: 539 - 548

    Article  Google Scholar 

  • Melin E, Nilsson H (1955) Ca45 used as an indicator of transport of cations to pine seedlings by means of mycorrhizal mycelium. Svensk Bot Tidskr 49: 119 - 122

    Google Scholar 

  • Michelsen A, Quarmby C, Sleep D (1998) Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115: 406 - 418

    Article  Google Scholar 

  • Miller SL, Allen EB (1992) Mycorrhiza, nutrient translocation, and interactions between plants. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 301 - 332

    Google Scholar 

  • Miller SL, Parsons WFJ, Knight DH (1989) Small scale hydro-excavation of soil monoliths from a lodgepole pine forest. Bull Ecol Soc Am 70: 205 - 206

    Google Scholar 

  • Miller SL, Koo CD, Molina R (1991) Characterisation of red alder ecto-mycorrhiza: a preface to monitoring belowground ecological responses. Can J Bot 69: 516 - 531

    Article  Google Scholar 

  • Molina R, Trappe JM (1994) Biology of the ectomycorrhial genus Rhizopogon. I. Host associations, specificity and pure culture syntheses. New Phytol 126: 653-675

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp 357 - 423

    Google Scholar 

  • Molina R, Smith JE, McKay D, Melville LH (1997) Biology of the ecto-mycorrhizal genus, Rhizopogon. III. Influence of co-cultured conifer species on mycorrhizal specificity with the arbutoid hosts Arctostaphylos uva-ursi and Arbutus menziesii. New Phytol 137: 519 - 528

    Article  Google Scholar 

  • Molina R, Trappe JM, Grubisha LC, Spatafora JW (1999) Rhizopogon. In: Cairney JWG, Chambers SM (eds) Ecto-mycorrhizal fungi: key genera in profile. Springer, Berlin Heidelberg New York, pp 129 - 161

    Google Scholar 

  • Moora M, Zobel M (1996) Effect of arbuscular mycorrhiza on inter-and intraspecific competition of two grassland species. Oecologia 108: 79 - 84

    Article  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Hogberg M. Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392: 914 - 916

    Google Scholar 

  • Nehls U, Berguiristain T, Ditengou F, Lapeyrie F, Martin F (1998) The expression of a symbiosis-regulated gene in eucalypt roots is regulated by auxins and hypaphorine, the tryptophan betaine of the ecto-mycorrhizal basidiomycete Pisolithus tinctorius. Planta 207: 296 - 302

    Article  PubMed  CAS  Google Scholar 

  • Newberry DM, Alexander IJ, Rother JA (2000) Does proximity to conspecific adults influence the establishment of ecto-mycorrhizal trees in rain forest? New Phytol 147: 401 - 409

    Article  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18: 243 - 270

    Article  Google Scholar 

  • Newman EI, Eason WR (1993) Rates of phosphorus transfer within and between rye-grass (Lolium perenne) plants. Funct Ecol 7: 242 - 248

    Article  Google Scholar 

  • Newman EI, Ritz K (1986) Evidence on the pathways of phosphorus transfer between vesicular-arbuscular mycorrhizal plants. New Phytol 104: 77 - 87

    Article  CAS  Google Scholar 

  • Newman EI, Eason WR, Eissenstat DM, Ramos MIRF (1992) Interactions between plants: the role of mycorrhiza. Mycorrhiza 1: 47 - 53

    Article  Google Scholar 

  • Newman EI, Devoy CLN, Easen NJ, Fowles KJ (1994) Plant species that can be linked by VA mycorrhizal fungi. New Phytol 126: 691 - 693

    Article  Google Scholar 

  • Norby RJ, O’Neill EG, Hood WG, Luxmoore RJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO2 enrichment. Tree Physiol 3: 203 - 210

    Article  PubMed  Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Micro 43: 1017 - 1035

    Article  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Blackwell Scientific, Oxford

    Google Scholar 

  • Olsson PA, Gray SN (1998) Patterns and dynamics of 32P-phosphate and labelled 2aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiol Ecol 26: 109 - 120

    Article  CAS  Google Scholar 

  • Olsson PA, Wallander H (1998) Interactions between ecto-mycorrhizal fungi and the bacterial community in soils amended with various primary minerals. FEMS Microbiol Ecol 27: 195 - 205

    Article  CAS  Google Scholar 

  • Olsson PA, Chalot M, Bââth E, Finlay RD, Söderström B (1996) Ecto-mycorrhizal mycelia reduce bacterial activity in a sandy soil FEMS Microb Ecol 21: 77 - 86

    CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Pedersen CR, Sylvia DM, Shilling DG (1999) Pisolithus arhizus ecto-mycorrhiza affects plant competition for phosphorus between Pinus elliottii and Panicum chamaelonche. Mycorrhiza 9: 199 - 204

    Google Scholar 

  • Perotto S, Actis-Perino E, Perugini J, Bonfante P (1996) Molecular diversity of fungi from ericoid mycorrhizal roots. Mol Ecol 5: 123 - 131

    Article  CAS  Google Scholar 

  • Perry DA (1998) A moveable feast: the evolution of resource sharing in plant-fungus communities. Tree 13: 432 - 434

    PubMed  CAS  Google Scholar 

  • Perry DA (1999) Reply from D.A. Perry. Tree 14: 70 - 71

    Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989a) Ecto-mycorrhizal mediation of competition between coniferous tree species. New Phytol 112: 501511

    Google Scholar 

  • Perry DA, Amaranthus MP, Borchers J, Borchers S, Brainerd R (1989b) Bootstrap** in ecosystems. BioScience 39: 230 - 237

    Article  Google Scholar 

  • Perry DA, Bell T, Amaranthus MP (1992) Mycorrhizal fungi in mixed-species forests and other tales of positive feedback, redundancy and stability. In: Cannell MGR, Malcolm DC, Robertson PA (eds) The ecology of mixed-species stands of trees. British Ecological Society, Spec Publ 11. Blackwell, Oxford, pp 151 - 179

    Google Scholar 

  • Persson H (1978) Root dynamics in a young Scots pine stand in central Sweden. Oikos 30: 508 - 519

    Article  Google Scholar 

  • Priha O, Lehto T, Smolander A (1999) Mycorrhizas and C and N transformations in the rhizopheres of Pinus sylvestris, Picea abies and Betula pendula seedlings. Plant Soil 206: 191 - 204

    Article  Google Scholar 

  • Pritsch K, Much JC, Buscot F (1997) Morphological and anatomical characterisation of black alder Alnus glutinosa (L.) Gaertn. ecto-mycorrhizas. Mycorrhiza 7: 201-216

    Google Scholar 

  • Qualls RG, Haines BL, Swank WT (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72: 254 - 266

    Article  Google Scholar 

  • Quoreshi AM, Timmer VR (1998) Exponential fertilization increases nutrient uptake and ectomycorrhizal development of black spruce seedlings. Can J For Res 28: 674 - 682

    Article  Google Scholar 

  • Read DJ (1994) Plant-microbe mutualisms and community structure. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York, pp 181 - 209

    Chapter  Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge Univ Press, Cambridge, pp 287 - 303

    Google Scholar 

  • Read DJ, Francis R, Finlay RD (1985) Mycorrhizal mycelia and nutrient cycling in plant communities. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil. Blackwell Scientific, Oxford, pp 193 - 217

    Google Scholar 

  • Reid CPP, Kidd FA, Ekwebelam SA (1983) Nitrogen nutrition, photosynthesis and carbon allocation in ecto-mycorrhizal pine. Plant Soil 71: 415 - 432

    Article  CAS  Google Scholar 

  • Rejon A, Garcia-Romera I, Ocampo JA, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence competition in a wheat-ryegrass association treated with the herbicide diclofop. Appl Soil Ecol 7: 51 - 57

    Article  Google Scholar 

  • Rennenberg H (1999) The significance of ecto-mycorrhizal fungi for sulfur nutrition of trees. Plant Soil 215: 115 - 122

    Article  CAS  Google Scholar 

  • Rieger A, Guttenberger M, Hampp R (1992) Soluble carbohydrates in mycorrhized and non-mycorrhized fine roots of spruce seedlings. Z Naturforsch 47 c: 201 - 204

    Google Scholar 

  • Ritz K, Newman EI (1984) Movement of 32P between intact grassland plants of the same age. Oikos 43: 138 - 142

    Article  CAS  Google Scholar 

  • Ritz K, Newman EI (1985) Evidence for rapid cycling of phosphorus from dying roots to living plants. Oikos 45: 174 - 180

    Article  Google Scholar 

  • Ritz K, Newman EI (1986) Nutrient transport between ryegrass plants differing in nutrient status. Oecologia 70: 128 - 131

    Article  Google Scholar 

  • Robinson D, Fitter AH (1999) The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J Exp Bot 50: 9 - 13

    CAS  Google Scholar 

  • Ross ow LJ, Bryant JP, Kielland K (1997) Effects of above-ground browsing by mammals on

    Google Scholar 

  • mycorrhizal infection in an early successional taiga ecosystem. Oecologia 110:94-98 Rouhier H; Read DJ (1998) Plant and fungal responses to elevated atmospheric carbon in mycorrhizal seedlings of Pinus sylvestris. Environ Exp Bot 40: 237 - 246

    Google Scholar 

  • Rygiewicz PT, Anderson CP (1994) Mycorrhiza alter quality and quantity of carbon allocated below-ground. Nature 369: 58 - 60

    Article  Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilization of the ecto-mycorrhizal fungi Amanita mus-caria and Hebeloma crustuliniforme depends on the cell wall-bound invertase activity of their host Picea abies. Bot Acta 104: 439 - 445

    CAS  Google Scholar 

  • Salzer P, Hager A (1993) Characterization of wall-bound invertase isoforms of Picea abies cells and regulation by ecto-mycorrhizal fungi. Phys Plant 88: 52 - 59

    Article  CAS  Google Scholar 

  • Sanders IR, Fitter AH (1992) The ecology and functioning of vesicular arbuscular mycorrhizas in co-existing grassland species. 1. Seasonal patterns of mycorrhizal occurrence and morphology. New Phytol 120: 517-524

    Google Scholar 

  • Schack-Kirchner H, Wilpert KV, Hildebrand EE (2000) The spatial distribution of soil hyphae in structured spruce-forest soils. Plant Soil 224: 195 - 205.

    Article  CAS  Google Scholar 

  • Schaeffer C, Wallenda T, Guttnberger M, Hampp R (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.) seedlings. New Phytol 129: 417 - 424

    Article  CAS  Google Scholar 

  • Schelkle M, Ursic M, Faruhar M, Peterson RL (1996) The use of laser scanning confocal microscopy to characterize mycorrhizas of Pinus strobus L. and to localize associated bacteria. Mycorrhiza 6: 431 - 440

    Article  Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990) Nitrate nutrition of maritime pine (Pinus pinaster Soland in Ait.) ecto-mycorrhizal with Hebeloma cylindrosporum Romagn. New Phytol 114: 93 - 98

    Article  CAS  Google Scholar 

  • Schmidt O, Curry JP (1999) Effects of earthworms on biomass production, nitrogen allocation and nitrogen transfer in wheat-clover intercrop** model systems. Plant Soil 214: 187 - 198

    Article  CAS  Google Scholar 

  • Seegmüller S, Schulte M, Herschbach C, Rennenberg H (1996) Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ 19: 418 - 426

    Article  Google Scholar 

  • Setälä H (1995) Growth of birch and pine seedlings in relation to grazing by soil fauna on ecto-mycorrhizal fungi. Ecology 76: 1844 - 1851

    Article  Google Scholar 

  • Shishido M, Massicotte HB, Chanway CP (1996a) Effect of plant growth promoting Bacillus strains on pine and spruce seedlings growth and mycorrhizal infection. Ann Bot 77: 433 - 441

    Article  Google Scholar 

  • Shishido M, Petersen, DJ, Massicotte HB, Chanway CP (1996b) Pine and spruce seedling growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strains. FEMS Microbiol Ecol 21: 109 - 119

    Article  CAS  Google Scholar 

  • Simard SW (1995) Interspecific carbon transfer in ecto-mycorrhizal tree species mixtures. PhD dissertation. Oregon State University, Corvallis, Oregon

    Google Scholar 

  • Simard SW (1999) Below-ground connections among trees: implications for enhanced silviculture and restoration. In: Egan B (ed) Hel** the land heal: ecological restoration in British Columbia. BC Environmental Network Educational Foundation, Victoria, BC, pp 179 - 184

    Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997a) Net transfer of carbon between tree species with shared ecto-mycorrhizal fungi. Nature 388: 579 - 582

    Article  CAS  Google Scholar 

  • Simard SW, Molina R, Smith JE, Perry DA, Jones MD (1997b) Shared compatibility of ecto-mycorrhiza on Pseudotsuga menziesii and Betula papyrifera seedlings grown in mixture in soils from southern British Columbia. Can J For Res 27: 331 - 342

    Article  Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997 c) Effects of soil trenching on occurrence of ecto-mycorrhiza on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136: 327 - 340

    Google Scholar 

  • Simard SW, Jones MD, Durall DM, Perry DA, Myrold DD, Molina R (1997d) Reciprocal transfer of carbon isotopes between ecto-mycorrhizal Betula papyrifera and Pseudotsuga menziesii. New Phytol 137: 529 - 542

    Article  CAS  Google Scholar 

  • Simard SW, Durall DM, Jones MD (1997e) Carbon allocation and carbon transfer between Betula papyrifera and Pseudotsuga menziesii seedlings using a 13C pulse-labeling method. Plant Soil 191: 41 - 55

    Article  CAS  Google Scholar 

  • Smith DC, Muscatine L, Lewis DH (1969) Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol Rev 44: 17 - 90

    Article  PubMed  CAS  Google Scholar 

  • Smith FA, Smith, SE (1988) Solute transfer at the interface: ecological implications. In: Mejstrik V (ed) Proceedings of the 2nd European Symposium on Mycorrhiza. August 1988, Prague, Czechoslovakia. p 100

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego Smith SE, Smith FA (1990) Structure and function of the interface in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1-38

    Google Scholar 

  • Smith JE, Molina R, Perry DA (1995) Occurrence of ecto-mycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol 129: 73 - 81

    Article  Google Scholar 

  • Söderström B, Finlay RD, Read DJ (1988) The structure and function of the vegetative mycelium of ecto-mycorrhizal plants. IV. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytol 109: 163-166

    Google Scholar 

  • Ta TC, Faris MA (1987) Species variation in the fixation and transfer of nitrogen from legumes to associated grasses. Plant Soil 98: 265 - 274

    Article  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1997) Independent, specialized invasions of ecto-mycorrhizal mutualism by two nonphotosynthetic orchids. Proc Natl Acad Sci USA 94: 4510 - 4515

    Article  PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8: 1719 - 1732

    Article  Google Scholar 

  • Tibbett M, Grantham K, Sanders FE, Cairney JWG (1998) Induction of cold active acid phosphomonoesterase activity at low temperature in psychotrophic ecto-mycorrhizal Hebeloma spp. Myco Res 102: 1533 - 1539

    CAS  Google Scholar 

  • Timonen S, Finlay RD, Olsson S, Söderström B (1996) Dynamics of phosphorus translocation in intact ecto-mycorrhizal systems: non-destructive monitoring using a ß-scanner. FEMS Microbiol Ecol 19: 171 - 180

    CAS  Google Scholar 

  • Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined location of Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus invoCarbon and Nutrient Fluxes Within and Between Mycorrhizal Plants 73

    Google Scholar 

  • Tutusmycorhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499-513

    Google Scholar 

  • Tinker PB, Durall DM, Jones MD (1994) Carbon use efficiency in mycorrhizas: theory and sample calculations. New Phytol 128: 115 - 122

    Article  CAS  Google Scholar 

  • Torti SD, Coley PD (1999) Tropical monodominance: a preliminary test of the ecto-mycorrhizal hypothesis. Biotropica 31: 220 - 228

    Article  Google Scholar 

  • Trappe JM, Fogel R (1977) Ecosystematic functions of mycorrhiza. Colorado State Univ Range Sci Dep Sci Ser 26: 205 - 214

    CAS  Google Scholar 

  • Turnbull MH, Schmidt S, Erskine PD, Richards S, Stewart GR (1996) Root adaptation and nitrogen source acquisition in natural ecosystems. Tree Physiol 16: 941 - 948

    Article  PubMed  Google Scholar 

  • Van Breeman N, Finlay R, Lundström U, Jongmans AG, Giesler R, Olsson M (2000) Mycorrhizal weathering: a true case of mineral plant nutrition? Biogeochemistry 49: 53 - 67

    Article  Google Scholar 

  • Van Tichelen KK, Colpaert JV (2000) Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizal Scots pine seedlings. Physiol Plant 110: 96 - 103

    Article  CAS  Google Scholar 

  • Van Tichelen KK, Vanstraelen T, Colparet JV (1999) Nutrient uptake by intact mycorrhizal Pinus sylvestris seedlings: a diagnostic tool to detect copper toxicity. Tree Physiol 19: 189 - 196

    Article  PubMed  CAS  Google Scholar 

  • Varga AM (1998) Characterisation and seasonal ecology of ecto-mycorrhiza associated with Sitka alder and lodgepole pine from naturally regenerating young and mature forests in the Sub-Boreal Spruce zone of British Columbia. MSc Thesis. University of Northern British Columbia, Prince George, BC

    Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63: 370 - 380

    Article  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ecto-mycorrhizal fungi. Plant Soil 218: 249 - 256

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9: 25 - 32

    Article  CAS  Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997a) Apatite as a P source in mycorrhizal and nonmycorrhizal Pinus sylvestris seedlings. Plant Soil 196: 123 - 131

    Article  CAS  Google Scholar 

  • Wallander H, Arnebrant K, Ostrand F, Kârén O (1997b) Uptake of 15N-labelled alanine, ammonium and nitrate in Pinus sylvestris L. ecto-mycorrhiza growing in forest soil treated with nitrogen, sulphur or lime. Plant Soil 195: 329 - 338

    Article  CAS  Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ecto-mycorrhizal roots. Plant Cell Environ 22: 179 - 187

    Article  CAS  Google Scholar 

  • Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp R, Seith B, George E, Marschner H (1996) Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L.] Karst.). Plant Soil 186: 361 - 369.

    Article  CAS  Google Scholar 

  • Walter LEF, Hartnett DC, Hetrick AD, Schwab AP (1996) Interspecific nutrient transfer in a tallgrass prairie plant community. Am J Bot 83: 180 - 184

    Article  Google Scholar 

  • Warner A, Mosse B (1983) Spread of vesicular-arbuscular mycorrhizal fungi between separate root systems. Trans Br Mycol Soc 80: 353 - 354

    Article  Google Scholar 

  • Waters JR, Borowicz VA (1994) Effect of clip**, benomyl, and genet on 14C transfer between mycorrhizal plants. Oikos 71: 246 - 252

    Article  CAS  Google Scholar 

  • Watkins NK, Fitter AH, Graves JD, Robinson D (1996) Carbon transfer between C3 and C4 plants linked by a common mycorrhizal network, quantified using stable carbon isotopes. Soil Biol Biochem 28: 471 - 477

    Article  CAS  Google Scholar 

  • Watteau F, Berthelin J (1994) Microbial dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur J Soil Biol 30: 1 - 9

    CAS  Google Scholar 

  • Wilkinson DM (1998) The evolutionary ecology of mycorrhizal networks. Oikos 82: 407 - 410.

    Article  Google Scholar 

  • Wilkinson DM (1999) Mycorrhizal networks are best explained by a plurality of mechanisms. A comment on Fitter et al. 1998. Funct Ecol 13: 435 - 436

    Google Scholar 

  • Wilpert KV, Schack-Kirchner H, Hoch R, Günther S, Hildebrand EE (1996) Bodenchemische und physikalische Faktoren des Myzelwachstums von Mykorrhizapilzen: Bodenstruktur, Gashaushalt und Hyphenverteilung In: von Wilpert K (ed) Verteilung und Aktivität von Mykorrhizen in Abhängigkeit von der Nährelement-, Wasser-und Sauerstoffverfügbarkeit. Forschungsberichte. ISSN 0948-535X. FZKA-PEF 146, pp 1-97

    Google Scholar 

  • Zelmer CD, Currah RS (1995) Evidence for a fungal liaison between Corallorhiza trifida (Orchidaceae) and Pinus contorta ( Pinaceae ). Can J Bot 73: 862-866

    Google Scholar 

  • Zhou M, Sharik TL (1997) Ecto-mycorrhizal associations of northern red oak (Quercus rubra) seedlings along an environmental gradient. Can J For Res 27: 1705 - 1713

    Article  Google Scholar 

  • Zhu Y-G, Laidlaw AS, Christie P, Hammond MER (2000) The specificity of arbuscular mycorrhizal fungi in a perennial ryegrass-white clover pasture. Agric Ecosys Environ 77: 211 - 218

    Article  Google Scholar 

  • Zobel M, Moora M (1995) Interspecific competition and arbuscular mycorrhiza: importance for the coexistence of two calcareous grassland species. Folia Geobot Phytotax 30: 223 - 230

    Article  Google Scholar 

  • Zobel M, Moora M, Haukioja E (1997) Plant coexistence in the interactive environment: arbuscular mycorrhiza should not be out of mind. Oikos 78: 202 - 208

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Simard, S.W., Jones, M.D., Durall, D.M. (2003). Carbon and Nutrient Fluxes Within and Between Mycorrhizal Plants. In: van der Heijden, M.G.A., Sanders, I.R. (eds) Mycorrhizal Ecology. Ecological Studies, vol 157. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38364-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38364-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00204-8

  • Online ISBN: 978-3-540-38364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation