Differential Histone Phosphorylation During Drosophila Development

  • Chapter
Differentiation and Neoplasia

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 11))

  • 67 Accesses

Abstract

During the ontogeny of Drosophila larval salivary gland cells, nuclear DNA is endoreduplicated and organized into polytene chromosomes. All DNA sequences are not reduplicated to the same extent. Satellite DNA’s, which are concentrated in the centromeric heterochromatin of diploid cells, are coalesced in the chromocenter of polytene cells (Gall et al. 1971) and selectively underreplicated (Dickson et al. 1971; Gall et al. 1971). In D. virilis, for instance, three satellites comprise about 45% of the diploid DNA (Gall et al. 1971; Blumenfeld and Forrest 1972) but less than 1% of polytene salivary gland cell DNA (Gall et al. 1971). Underreplication presumably involves specific interactions between chromosomal proteins and satellite DNA’s, or nucleotide sequences lying near satellites. Proteins that can be correlated with satellites migth be involved with these interactions. With this in mind, consider that the underreplication of satellite DNA is correlated with the decreased phosphorylation of Hl histones (Blumenfeld et al. 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Balhorn R., Chalkley R., Granner D.: Lysine-rich histone phosphorylation: A positive correlation with cell replication. Biochemistry 11, 1094–1098 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Billings P.C., Orf J.W., Palmer D.K., Talmage D.A., Pan C.G., Blumenfeld M.: Anomalous electrophoretic mobility of Drosophila phosphorylated H1 histone: Is it related to the compaction of satellite DNA into heterochromatin? Nucleic Acids Research 6, 2151–2164 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Blumenfeld M., Forrest H.S.: Differential underreplication of satellite DNAs during Drosophila development. Nature New Biol. 239, 170–172 (1972).

    PubMed  CAS  Google Scholar 

  • Blumenfeld M., Orf J.W., Sina B.J., Kreber R.A., Callahan M.A., Mullins J.I., Snyder L.A.: Correlation between phosphorylated H1 histones and satellite DNAs in Drosophila virilis. Proc. Natl. Acad. Sci. USA 75, 866–870 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Bradbury E.M., Inglis R.J., Matthews H.R., Sarner N.: Phosphorylation of very-lysine-rich histone in Physarum polycephalum. Correlation with chromatin condensation. Eur. J. Biochem. 33, 131–139 (1973).

    CAS  Google Scholar 

  • Dickson E., Boyd J., Laird C.D.: Sequence diversity of polytene chromosome DNA from Drosophila hydei. J. Mol. Biol. 61, 615–627 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Felsenfeld G.: Chromatin. Nature 271, 115–122 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Gall J.G., Cohen E.H., Polan M.L.: Repetitive DNA sequences in Drosophila. Chromosoma 33, 319–344 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Gorovsky M.A., Keevert J.B.: The absence of histone F1 in a mitotically dividing, genetically inactive nucleus. Proc. Natl. Acad. Sci. USA 72, 2672–2676 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Hohmann P., Tobey R.A., Gurley L.R.: Phosphorylation of distinct regions of F1 histone. Relationship to the cell cycle. J. Biol. Chem. 251, 3685–3692 (1976).

    CAS  Google Scholar 

  • Kornberg R.D.: Structure of chromatin. Ann. Rev. Biochem. 46, 931–954 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Langan T.A.: Action of adenosine 3′,5′-monophosphate-dependent histone kinase in vivo. J. Biol. Chem. 244, 5763–5765 (1969).

    PubMed  CAS  Google Scholar 

  • Meisler M.H., Langan T.A.: Characterization of a phosphatase specific for phosphorylated histones and protamine. J. Biol. Chem. 244, 4961–4968 (1969).

    PubMed  CAS  Google Scholar 

  • Thomas J.O., Kornberg R.D.: An octamer of histones in chromatin and free in solution. Proc. Natl. Acad. Sci. USA 72, 2676–2680 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blumenfeld, M., Billings, P.C., Orf, J.W., Pan, C.G., Palmer, D.K., Snyder, L.A. (1980). Differential Histone Phosphorylation During Drosophila Development. In: McKinnell, R.G., DiBerardino, M.A., Blumenfeld, M., Bergad, R.D. (eds) Differentiation and Neoplasia. Results and Problems in Cell Differentiation, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38267-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38267-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11561-9

  • Online ISBN: 978-3-540-38267-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation