Creating Photorealistic Models by Data Fusion with Genetic Algorithms

  • Chapter
Soft Computing in Image Processing

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 210))

Abstract

Building photorealistic 3D models of real-world objects is a fundamental problem in computer vision and computer graphics. Such models require precise geometry as well as detailed texture on the surface. Textures allow one to obtain visual effects that are essential for high-quality rendering. Photorealism is further enhanced by adding surface roughness in form of the so-called 3D texture represented by a bump map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.J. Besl and N.D. McKay. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Analysis and Machine Intelligence, 14:239–256, 1992.

    Article  Google Scholar 

  2. K. Brunnström and A.J. Stoddart. Genetic algorithms for free-form surface matching. In Proc. International Conference on Pattern Recognition, volume 4, pages 689–693. IEEE Comp. Soc., 1996.

    Google Scholar 

  3. P.J. Burt and E. H. Adelson. A multiresolution spline with application to image mosaics. ACM Trans. Graph.., 2(4):217–236, 1983.

    Article  Google Scholar 

  4. D. Chetverikov, D. Stepanov, and P. Krsek. Robust Euclidean Alignment of 3D point sets: the Trimmed Iterative Closest Point algorithm. Image and Vision Computing, 23:299–309, 2005.

    Article  Google Scholar 

  5. C.K. Chow, H.T. Tsui, and T. Lee. Surface registration using a dynamic genetic algorithm. Pattern Recognition, 37:105–117, 2004.

    Article  MATH  Google Scholar 

  6. O. Cordon, S. Damas, and J. Santamaria. A CHC Evolutionary Algorithm for 3D Image Registration. In LNAI, volume 2715, pages 404–411. Springer, 2003.

    Google Scholar 

  7. T. Csendes. Nonlinear parameter estimation by global optimization – Efficiency and Reliability. Acta Cybernetica, 8:361–370, 1988.

    MATH  MathSciNet  Google Scholar 

  8. F. Bernardini et al. Building a digital model of Michelangelo’s Florentine Pietà. IEEE Comp. Graphics & Applications, 22(1):59–67, 2002.

    Article  Google Scholar 

  9. K. Ikeuchi et al. The great Buddha project: Modeling cultural heritage for VR systems through observation. In Proc. IEEE ISMAR03, 2003.

    Google Scholar 

  10. M.J. Clarkson et al. Using photo-consistency to register 2D optical images of the human face to a 3D surface model. IEEE Tr. on PAMI, 23:1266–1280, 2001.

    Google Scholar 

  11. P. David et al. SoftPOSIT: Simultaneous pose and correspondence determination. In Proc. 7 th European Conf. on Computer Vision, pages 698–714, 2002.

    Google Scholar 

  12. R.B. Haralick et al. Pose estimation from corresponding point data. IEEE Tr. on SMC, 19:1426–1445, 1989.

    Google Scholar 

  13. M.S. Floater and K. Hormann. Surface parameterization: a tutorial and survey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in Multiresolution for Geometric Modelling, Mathematics and Visualization, pages 157–186. Springer-Verlag, Berlin, Heidelberg, 2005.

    Chapter  Google Scholar 

  14. R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Univ. Press, 2000.

    Google Scholar 

  15. J.J. Jacq and C. Roux. Registration of 3-D images by genetic optimization. Pattern Recognition Letters, 16:823–841, 1995.

    Article  Google Scholar 

  16. Z. Jankó and D. Chetverikov. Photo-consistency based registration of an uncalibrated image pair to a 3D surface model using genetic algorithm. In Proc. 2 nd Int. Symp. on 3D Data Processing, Visualization & Transmission, pages 616–622, 2004.

    Google Scholar 

  17. Z. Jankó, D. Chetverikov, and A. Ekárt. Using a genetic algorithm to register an uncalibrated image pair to a 3D surface model. Int. Sci. Journal of Engineering Applications of Artificial Intelligence, 2005. Accepted for publication.

    Google Scholar 

  18. G. Kós. An algorithm to triangulate surfaces in 3D using unorganised point clouds. Computing Suppl.., 14:219–232, 2001.

    Google Scholar 

  19. G. Kós and T. Várady. Parameterizing complex triangular meshes. In Proc. 5 th International Conf. on Curves and Surfaces, pages 265–274, 2003.

    Google Scholar 

  20. K.N. Kutulakos and S.M. Seitz. A Theory of Shape by Space Carving. Prentice Hall, 1993.

    Google Scholar 

  21. M.E. Leventon, W.M. Wells III, and W.E.L. Grimson. Multiple view 2D-3D mutual information registration. In Proc. Image Understanding Workshop, 1997.

    Google Scholar 

  22. E. Lomonosov, D. Chetverikov, and A. Ekárt. Pre-registration of arbitrarily oriented 3D surfaces using a genetic algorithm. Pattern Recognition Letters, Special Issue on Evolutionary Computer Vision and Image Understanding, 2005. Accepted for publication.

    Google Scholar 

  23. M. Levoy et al. The digital Michelangelo project. ACM Computer Graphics Proceedings, pages 131–144, 2000.

    Google Scholar 

  24. Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer, 2000.

    Google Scholar 

  25. G. Renner and A. Ekárt. Genetic algorithms in computer aided design. Computer-Aided Design, pages 709–726, 2003.

    Google Scholar 

  26. C. Robertson and R. Fisher. Parallel evolutionary registration of range data. Computer Vision and Image Understanding, 87:39–55, 2002.

    Article  MATH  Google Scholar 

  27. M. Salomon, G.R. Perrin, and F. Heitz. Differential Evolution for Medical Image Registration. In International Conference on Artificial Intelligence, pages 201–207, 2001.

    Google Scholar 

  28. L. Silva, O.R.P. Bellon, and K.L. Boyer. Enhanced, robust genetic algorithms for multiview range image registration. In Fourth International Conference on 3-D Digital Imaging and Modeling, pages 268–275, 2003.

    Google Scholar 

  29. S.M. Yamany, M.N. Ahmed, and A.A. Farag. A New Genetic-Based Technique for Matching 3D Curves and Surfaces. Pattern Recognition, 32:1817–1820, 1999.

    Article  Google Scholar 

  30. Y. Yemez and F. Schmitt. 3D reconstruction of real objects with high resolution shape and texture. Image and Vision Computing, 22:1137–1153, 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Chetverikov, D., Jankó, Z., Lomonosov, E., Ekárt, A. (2007). Creating Photorealistic Models by Data Fusion with Genetic Algorithms. In: Nachtegael, M., Van der Weken, D., Kerre, E.E., Philips, W. (eds) Soft Computing in Image Processing. Studies in Fuzziness and Soft Computing, vol 210. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38233-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38233-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38232-4

  • Online ISBN: 978-3-540-38233-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation