Tackling the Chemogenomic Space by Novel Screening Technologies

  • Conference paper
Chemical Genomics

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 58))

Abstract

Drug discovery in the chemogenomic space has seen some tremendous changes over the last decade. Compared to previous times, not only the number of available chemical compounds for screening, but also the number of molecular targets used for screening has increased significantly. This has triggered the need for very fast, efficient, and effective novel readout technologies for compound testing. Novartis has developed two novel high-throughput screening (HTS) technologies for that purpose — NanoScreen and SpeedScreen. NanoScreen is a highly miniaturized and fully automated HTS/uHTS test system with confocal single-molecule as well as non-confocal detection capabilities and is used for functional screening in the range of 1–5 µl per sample. The integration of the single-molecule readout technologies into the system enables highly sophisticated biochemical test systems with multi-parameter readout for very high data quality. SpeedScreen is a highly miniaturized and automated screening system for high-throughput affinity-selection of compounds. In practice, pools of compounds are incubated with the target protein and the unbound chemical compounds are removed from the target-compound complex via very fast, multiparallel size-exclusion-chromatography. The holoenzyme is disintegrated and analyzed via microbore reversed-phase high performance liquid chromatography (microbore RP-HPLC). Both systems have been developed and implemented with great success at the Novartis Lead Discovery Center (LDC) in Basel. These technologies have enabled us to access targets that would otherwise not have been possible, e.g., very expensive targets, “orphan” drug targets, or targets that are “non-tractable” by conventional screening technologies. Taken together, these novel screening technologies enable novel approaches for chemogenomic research that would have not been possible in the past.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Brown N, Zehender H, Azzaoui K, Schuffenhauer A, Mayr LM, Jacoby E (2006) A chemoinformatics analysis of hitlists obtained from high-throughput affinity-selection screening. J Biomol Screen 10 (in press)

    Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  PubMed  CAS  Google Scholar 

  • Muckenschnabel I, Falchetto R, Mayr LM, Filipuzzi I (2004) SpeedScreen: label-free liquid chromatography-mass spectrometry-based HTS for the discovery of orphan protein ligands. Anal Biochem 324:241–249

    Article  PubMed  CAS  Google Scholar 

  • Zehender H, Le Goff F, Lehmann N, Filipuzzi I, Mayr LM (2004) SpeedScreen: the ‘missing link’ between genomics and lead discovery. J Biomol Screen 9:498–505

    Article  PubMed  CAS  Google Scholar 

  • Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mayr, L.M. (2006). Tackling the Chemogenomic Space by Novel Screening Technologies. In: Jaroch, S., Weinmann, H. (eds) Chemical Genomics. Ernst Schering Research Foundation Workshop, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37635-4_8

Download citation

Publish with us

Policies and ethics

Navigation