Protein Structure Similarity Clustering and Natural Product Structure as Guiding Principles for Chemical Genomics

  • Conference paper
Chemical Genomics

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 58))

Abstract

The majority of all proteins are modularly built from a limited set of approximately 1,000 structural domains. The knowledge of a common protein fold topology in the ligand-sensing cores of protein domains can be exploited for the design of small-molecule libraries in the development of inhibitors and ligands. Thus, a novel strategy of clustering protein domain cores based exclusively on structure similarity considerations (protein structure similarity clustering, PSSC) has been successfully applied to the development of small-molecule inhibitors of acetylcholinesterase and the 11β-hydroxysteroid dehydrogenases based on the structure of a naturally occurring Cdc25 inhibitor. The efficiency of making use of the scaffolds of natural products as biologically prevalidated starting points for the design of compound libraries is further highlighted by the development of benzopyran-based FXR ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abreu PM, Branco PS (2003) Natural product-like combinatorial libraries. J Braz Chem Soc 14:675–712

    Article  CAS  Google Scholar 

  • Ajay Walters WP, Murcko MA (1998) Can we learn to distinguish between “drug-like” and “nondrug-like” molecules? J Med. Chem 41:3314–3324

    Article  Google Scholar 

  • Alberts P, Engblom L, Edling N, Forsgren M, Klingstrom G, Larsson C, Ronquist-Nii Y, Ohman B, Abrahmsen L (2002) Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia 45:1528–1532

    Article  PubMed  CAS  Google Scholar 

  • Arya P, Joseph R, Chou DTH (2002) Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age. Chem Biol 9:145–156

    Article  PubMed  CAS  Google Scholar 

  • Barun O, Sommer S, Waldmann H (2004) Asymmetric solid-phase synthesis of 6,6-spiroketals. Angew Chem Int Ed 43:3195–3199, and references therein

    Article  CAS  Google Scholar 

  • Bogan AA, Cohen FE, Scanlan TS (1998) Natural ligands of nuclear receptors have conserved volumes. Nat Struct Biol 5:679–681

    Article  PubMed  CAS  Google Scholar 

  • Breinbauer R, Vetter IR, Waldmann H (2002) From protein domains to drug candidates — natural products as guiding principles in the design and synthesis of compound libraries. Angew Chem Int Ed 41:2879–2890

    Google Scholar 

  • Brohm D, Metzger S, Bhargava A, Muller O, Lieb F, Waldmann H (2002a) Natural products are biologically validated starting points in structural space for compound library development: solid-phase synthesis of dysidiolidederived phosphatase inhibitors. Angew Chem Int Ed 41:307–311

    Article  CAS  Google Scholar 

  • Brohm D, Philippe N, Metzger S, Bhargava A, Muller O, Lieb F, Waldmann H (2002b) Solid-phase synthesis of dysidiolide-derived protein phosphatase inhibitors. J Am Chem Soc 124:13171–13178

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP (2004) Is 11beta-hydroxysteroid dehydrogenase type 1 a good therapeutic target for blockade of glucocorticoid actions? Proc Natl Acad Sci U S A 101:6329–6330

    Article  PubMed  CAS  Google Scholar 

  • Claudel T, Sturm E, Kuipers F, Staels B (2004) The farnesoid X receptor: a novel drug target? Expert Opin Investig Drugs 13:1135–1148

    Article  PubMed  CAS  Google Scholar 

  • Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Lowik C (2003) Peroxisome proliferator-activated receptor gamma (PPAR gamma) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 278:962–967

    Article  PubMed  CAS  Google Scholar 

  • Evans BE, Rittle KE, Bock MG, Dipardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RSL et al (1988) Methods for drug discovery — development of potent selective orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA et al (2003) A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11:1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Fauman EB, Cogswell JP, Lovejoy B, Rocque WJ, Holmes W, Montana VG, Piwnica-Worms H, Rink MJ, Saper MA (1998) Crystal structure of the catalytic domain of the human cell cycle control phosphatase Cdc25A. Cell 93:617–625

    Article  PubMed  CAS  Google Scholar 

  • Frye SV (1999) Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chem. Biol 6:R3–R7

    Article  PubMed  CAS  Google Scholar 

  • Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70:209–246

    Article  PubMed  CAS  Google Scholar 

  • Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68

    Article  PubMed  CAS  Google Scholar 

  • Golebiowski A, Klopfenstein SR, Portlock DE (2001) Lead compounds discovered from libraries. Curr Opin Chem Biol 5:273–284

    Article  PubMed  CAS  Google Scholar 

  • Grishin NV (2001) Fold change in evolution of protein structures. J Struct Biol 134:167–185

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera SP, McCarthy PJ, KellyBorges M, Lobkovsky E, Clardy J (1996) Dysidiolide: a novel protein phosphatase inhibitor from the Caribbean sponge Dysidea etheria de Laubenfels. J Am Chem Soc 118:8759–8760

    Article  CAS  Google Scholar 

  • Holm L, Sander C (1996) The FSSP database: fold classification based on structure-structure alignment of proteins. Nucleic Acids Res 24:206–209

    Article  PubMed  CAS  Google Scholar 

  • Holm L, Sander C (1997) Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Res 25:231–234

    Article  PubMed  CAS  Google Scholar 

  • Ibach B, Haen E (2004) Acetylcholinesterase inhibition in Alzheimer’s disease. Curr Pharm Des 10:231–251

    Article  PubMed  CAS  Google Scholar 

  • Jacoby E, Schuffenhauer A, Floersheim P (2003) Chemogenomics knowledge-based strategies in drug discovery. Drug News Perspect 16:93–102

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Waldmann H (2004) Natural product-derived compound libraries and protein structure similarity as guiding principles for the discovery of drug candidates. In: Kubinyi H, Müller G (eds) Chemogenomics in drug discovery: a medicinal chemistry perspective. Wiley-VCH, Weinheim, pp 377–403

    Google Scholar 

  • Koch MA, Waldmann H (2005) Protein structure similarity clustering and natural product structure as guiding principles in drug discovery. Drug Discov Today 10:471–483

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Breinbauer R, Waldmann H (2003) Protein structure similarity as guiding principle for combinatorial library design. Biol Chem 384:1265–1272

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Wittenberg L-O, Basu S, Jeyaraj DA, Gourzoulidou E, Reinecke K, Odermatt A, Waldmann H (2004) Compound library development guided by protein structure similarity clustering and natural product structure. Proc Natl Acad Sci U S A 101:16721–16726

    Article  PubMed  ADS  CAS  Google Scholar 

  • Lee ML, Schneider G (2001) Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries. J Comb Chem 3:284–289

    Article  PubMed  CAS  Google Scholar 

  • Lyon MA, Ducruet AP, Wipf P, Lazo JS (2002) Dual-specificity phosphatases as targets for antineoplastic agents. Nat Rev Drug Discov 1:961–976

    Article  PubMed  CAS  Google Scholar 

  • Mason JS, Hermsmeier NA (1999) Diversity assessment. Curr Opin Chem Biol 3:342–349

    Article  PubMed  CAS  Google Scholar 

  • Masuzaki H, Flier JS (2003) Tissue-specific glucocorticoid reactivating enzyme, 11 beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) — a promising drug target for the treatment of metabolic syndrome. Curr Drug Targets Immune Endocr Metabol Disord 3:255–262

    Article  PubMed  CAS  Google Scholar 

  • Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, Seckl JR, Flier JS (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170

    Article  PubMed  ADS  CAS  Google Scholar 

  • New MI, Wilson RC (1999) Steroid disorders in children: congenital adrenal hyperplasia and apparent mineralocorticoid excess. Proc Natl Acad Sci U S A 96:12790–12797

    Article  PubMed  ADS  CAS  Google Scholar 

  • Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barluenga S, Mitchell HJ (2000a) Natural product-like combinatorial libraries based on privileged structures 1. General principles and solid-phase synthesis of benzopyrans. J Am Chem. Soc 122:9939–9953

    Article  CAS  Google Scholar 

  • Nicolaou KC, Pfefferkorn JA, Mitchell HJ, Roecker AJ, Barluenga S, Cao GQ, Affleck RL, Lillig JE (2000b) Natural product-like combinatorial libraries based on privileged structures 2. Construction of a 10,000-membered benzopyran library by directed split-and-pool chemistry using NanoKans and optical encoding. J Am Chem Soc 122:9954–9967

    Article  CAS  Google Scholar 

  • Nicolaou KC, Pfefferkorn JA (2001) Solid phase synthesis of complex natural products and libraries thereof. Biopolymers 60:171–193

    Article  PubMed  CAS  Google Scholar 

  • Nicolaou KC, Evans RM, Roecker AJ, Hughes R, Downes M, Pfefferkorn JA (2003) Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries. Org Biomol Chem 1:908–920

    Article  PubMed  CAS  Google Scholar 

  • Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, Staels B, Seckl JR, Mullins JJ (2004) Metabolic syndrome without obesity: hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci U S A 101:7088–7093

    Article  PubMed  ADS  CAS  Google Scholar 

  • Pike ACW, Brzozowski AM, Hubbard RE, Bonn T, Thorsell AG, Engstrom O, Ljunggren J, Gustafsson JK, Carlquist M (1999) Structure of the ligand-binding domain of oestrogen receptor beta in the presence of a partial agonist and a full antagonist. EMBO J 18:4608–4618

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M, Escriva Garcia H, Laudet V (2003) The nuclear receptor superfamily. J Cell Sci 116:585–586

    Article  PubMed  Google Scholar 

  • Ross SA, Gulve EA, Wang M (2004) Chemistry and biochemistry of type 2 diabetes. Chem Rev 104:1255–1282

    Article  PubMed  CAS  Google Scholar 

  • Russell RB, Sasieni PD, Sternberg MJE (1998) Supersites within superfolds. Binding site similarity in the absence of homology. J Mol Biol 282:903–918

    Article  PubMed  CAS  Google Scholar 

  • Sadowski J, Kubinyi H (1998) A scoring scheme for discriminating between drugs and nondrugs. J Med Chem 41:3325–3329

    Article  PubMed  CAS  Google Scholar 

  • Sandeep TC, Yau JL, MacLullich AM, Noble J, Deary IJ, Walker BR, Seckl JR (2004) 11Beta-hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proc Natl Acad Sci U S A 101:6734–6739

    Article  PubMed  ADS  CAS  Google Scholar 

  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schapira M (2002) Pharmacogenomics opportunities in nuclear receptor targeted cancer therapy. Curr Cancer Drug Targets 2:243–256

    Article  PubMed  CAS  Google Scholar 

  • Schapira M, Raaka BM, Samuels HH, Abagyan R (2000) Rational discovery of novel nuclear hormone receptor antagonists. Proc Natl Acad Sci U S A 97:1008–1013

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schreiber SL (2000) Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287:1964–1969

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schweizer RA, Atanasov AG, Frey BM, Odermatt A (2003) A rapid screening assay for inhibitors of 11beta-hydroxysteroid dehydrogenases (11beta-HSD): flavanone selectively inhibits 11beta-HSD1 reductase activity. Mol Cell Endocrinol 212:41–49

    Article  PubMed  CAS  Google Scholar 

  • Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11:739–747

    Article  PubMed  CAS  Google Scholar 

  • Spencer RW (1998) High-throughput screening of historic collections: observations on file size, biological targets, and file diversity. Biotechnol Bioeng 61:61–67

    Article  PubMed  CAS  Google Scholar 

  • Todd AE, Orengo CA, Thornton JM (1999) Evolution of protein function, from a structural perspective. Curr Opin Chem Biol 3:548–556

    Article  PubMed  CAS  Google Scholar 

  • Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan YZ, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD (2002) A natural product that lowers cholesterol as an antagonist ligand for FXR. Science 296:1703–1706

    Article  PubMed  ADS  CAS  Google Scholar 

  • Van Gaal L, Scheen AJ (2002) Are all glitazones the same? Diabetes Metab Res Rev 18[Suppl 2]:S1–S4

    Article  PubMed  CAS  Google Scholar 

  • Walker BR, Seckl JR (2003) 11beta-hydroxysteroid dehydrogenase type 1 as a novel therapeutic target in metabolic and neurodegenerative disease. Expert Opin Ther Targets 7:771–783

    Article  PubMed  CAS  Google Scholar 

  • Walters WP, Murcko A, Murcko MA (1999) Recognizing molecules with drug-like properties. Curr Opin Chem Biol 3:384–387

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koch, M.A., Waldmann, H. (2006). Protein Structure Similarity Clustering and Natural Product Structure as Guiding Principles for Chemical Genomics. In: Jaroch, S., Weinmann, H. (eds) Chemical Genomics. Ernst Schering Research Foundation Workshop, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37635-4_7

Download citation

Publish with us

Policies and ethics

Navigation