Chemogenomics Strategies for G-Protein Coupled Receptor Hit Finding

  • Conference paper
Chemical Genomics

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 58))

Abstract

Targeting protein superfamilies via chemogenomics is based on a similarity clustering of gene sequences and molecular structures of ligands. Both target and ligand clusters are linked by generating binding affinity profiles of chemotypes vs a target panel. The application of this multidimensional similarity paradigm will be described in the context of Lead Generation to identify novel chemical hit classes for G-protein coupled receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Beroza P, Villar HO, Wick MM, Martin GR (2002) Chemoproteomics as a basis for post-genomic drug discovery. Drug Discov Today 7:807–814

    Article  PubMed  CAS  Google Scholar 

  • Bleicher KH (2002) Chemogenomics: bridging a drug discovery gap. Curr Med Chem 9:2077–2084

    PubMed  CAS  Google Scholar 

  • Bredel M, Jacoby E (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat Rev Genet 5:262–275

    Article  PubMed  CAS  Google Scholar 

  • Caron PR, Mullican MD, Mashal RD, Wilson KP, Su MS, Murcko MA (2001) Chemogenomic approaches to drug discovery. Curr Opin Chem Biol 5:464–470

    Article  PubMed  CAS  Google Scholar 

  • Cerep (2005) http://www.cerep.fr/Cerep/Users/index.asp

    Google Scholar 

  • Crossley R (2004) The design of screening libraries targeted at G-protein coupled receptors. Curr TopMed Chem 4:581–588

    Article  CAS  Google Scholar 

  • Daylight Chemical Information Systems, Inc., http://www.daylight.com (2002)

    Google Scholar 

  • Dixon SL, Villar HO (1998) Bioactive diversity and screening library selection via affinity fingerprinting. J Chem Inf Comput Sci 38:1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Fliri AF, Loging WT, Thadeio PF, Volkmann RA (2005) Biological spectra analysis: linking biological activity profiles to molecular structure. Proc Natl Acad Sci U S A 102:261–266

    Article  PubMed  ADS  CAS  Google Scholar 

  • Frye SV (1999) Structure-activity relationship homology (SARAH): a conceptual framework for drug discovery in the genomic era. Chem Biol 6:R3–R7

    Article  PubMed  CAS  Google Scholar 

  • Guba W, Neidhart W, Nettekoven M (2005) Novel and potent NPY5 receptor antagonists derived from virtual screening and iterative parallel chemistry design. Bioorg Med Chem Lett 15:1599–1603

    Article  PubMed  CAS  Google Scholar 

  • Jacoby E (2001) Quant Struc-Act Relat 20:115–123

    Article  CAS  Google Scholar 

  • Jacoby E, Fauchere J-L, Raimbaud E, Ollivier S, Michel A, Spedding M (1999) A three binding site hypothesis for the interaction of ligands with monoamine G protein-coupled receptors: implications for combinatorial ligand design. Quant Struct-Act Relat 18:561–571

    Article  CAS  Google Scholar 

  • Jacoby E, Schuffenhauer A, Floersheim P (2003) Chemogenomics knowledge-based strategies in drug discovery. Drug News Perspect 16:93–102

    Article  PubMed  CAS  Google Scholar 

  • Kauvar LM, Higgins DL, Villar HO, Sportsman JR, Engqvist-Goldstein A, Bukar R, Bauer KE, Dilley H, Rocke DM (1995) Predicting ligand binding to proteins by affinity fingerprinting. Chem Biol 2:107–118

    Article  PubMed  CAS  Google Scholar 

  • Krejsa CM, Horvath D, Rogalski SL, Penzotti JE, Mao B, Barbosa F, Migeon JC (2003) Predicting ADME properties and side effects: the BioPrint approach. Curr Opin Drug Discov Devel 6:470–480

    PubMed  CAS  Google Scholar 

  • Kubinyi H, Müller G (2004) (eds) Chemogenomics in drug discovery. Wiley-VCH, Weinheim

    Google Scholar 

  • Maggiora GM, Johnson MA (1990) (eds) Concepts and applications of molecular similarity. Wiley-Interscience, New York

    Google Scholar 

  • Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358

    Article  PubMed  CAS  Google Scholar 

  • Müller G (2003) Medicinal chemistry of target family-directed masterkeys. Drug Discov Today 8:681–691

    Article  PubMed  Google Scholar 

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745

    Article  PubMed  ADS  CAS  Google Scholar 

  • Patterson DE, Cramer RD, Ferguson AM, Clark RD, Weinberger LE (1996) Neighborhood behavior: a useful concept for validation of “molecular diversity” descriptors. J Med Chem 39:3049–3059

    Article  PubMed  CAS  Google Scholar 

  • Porter R, Alanine A (2005) Screening 1:21–23

    Google Scholar 

  • Savchuk NP, Balakin KV, Tkachenko SE (2004) Exploring the chemogenomic knowledge space with annotated chemical libraries. Curr Opin Chem Biol 8:412–417

    Article  PubMed  CAS  Google Scholar 

  • Schuffenhauer A, Zimmermann J, Stoop R, Van der Vyver J-J, Lecchini S, Jacoby E (2002) An ontology for pharmaceutical ligands and its application for in silico screening and library design. J Chem Inf Comput Sci 42:947–955

    Article  PubMed  CAS  Google Scholar 

  • Vertex Pharmaceuticals Incorporated. http://www.vpharm.com

    Google Scholar 

  • Weinstein JN, Myers TG, O’Connor PM, Friend SH, Fornace AJ Jr, Kohn KW, Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B, Viswanadhan VN, Johnson GS, Wittes RE, Paull KD (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275:343–349

    Article  PubMed  CAS  Google Scholar 

  • Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled receptors. Drug Discov Today 7:235–246

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guba, W. (2006). Chemogenomics Strategies for G-Protein Coupled Receptor Hit Finding. In: Jaroch, S., Weinmann, H. (eds) Chemical Genomics. Ernst Schering Research Foundation Workshop, vol 58. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37635-4_2

Download citation

Publish with us

Policies and ethics

Navigation