Materials Science and Engineering

  • Reference work entry
Springer Handbook of Mechanical Engineering

Abstract

The chapter is structured into the following main parts. After a short introduction which addresses the term materials as it is used in mechanical engineering and sorts out other matters for the sake of space, the first main section, Sect. 3.1, describes the fundamentals of atomic structure and microstructure of materials (as defined in the introduction). The following Sects. 3.3, 3.4, 3.5, 3.6 deal with the most important properties and testing methods of materials from the viewpoint of mechanical engineers. The last and largest Sect. 3.7 is devoted to the most commonly used materials in mechanical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 373.43
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABS:

acrylonitrile-butadiene-styrene

ADI:

austempered cast iron

ADI:

austempered ductile cast iron

AFM:

atomic force microscope

BHS:

Brinell hardness

BHW:

Brinell hardness

BSE:

backscattered electrons

CCD:

charge-coupled device

CCT:

continuous cooling transition

CFRP:

carbon fiber reinforced plastic

CGI:

compacted graphite iron

CPT:

critical pitting temperature

CVD:

chemical vapor deposition

DBTT:

ductile to brittle transition

DIC:

differential interference contrast

DPH:

diamond-pyramid hardness number

DSC:

differential scanning calorimetry

EBSD:

electron backscatter diffraction

EDS:

energy-dispersive x-ray spectroscopy

EDX:

energy dispersive x-ray spectrometer

EELS:

electron energy loss spectroscopy

EPMA:

electron probe microanalysis

ESCA:

electron spectroscopy for chemical analysis

FIB:

focused ion beam

HDPE:

high-density polyethylene

HP:

high pressure

HSLA:

high-strength low-alloy

IC:

integrated circuits

ICDD:

International Center for Diffraction Data

LRO:

long-range order

MIC:

microbiologically influenced corrosion

MPI:

magnetic particle inspection

ND:

normal direction

NDE:

nondestructive evaluation

NDI:

nondestructive inspection

NDT:

nondestructive testing

OIM:

orientation imaging microscopy

PC:

personal computer

PC:

polycrystalline

PC:

pulverized coal

PDF:

powder diffraction file

PET:

polyethylene terephthalate

PS:

passive sum

PSB:

persistent slip bands

PVC:

polyvinyl chloride

PVD:

physical vapor deposition

RD:

rolling direction

RT:

radiographic testing

RT:

reheat turbine

RT:

room temperature

SBR:

polystyrene-butadien-rubber

SE:

secondary electrons

SEM:

scanning electron microscopy

SHM:

structural health monitoring

SI:

secondary ions

SI:

spark ignition

SI:

spark-ignited

SI:

system international

SIMS:

secondary-ion mass spectroscopy

SRO:

short-range order

TD:

transversal direction

TEM:

transmission electron microscopy

TTT:

time–temperature transition

UNS:

unified numbering system

US:

ultrasonic

UTS:

ultimate tensile strength

VHN:

Vickers hardness number

WDS:

wavelength dispersive x-ray spectroscopy

WDX:

wavelength dispersive x-ray spectroscopy

XPS:

x-ray-exited photoelectron spectroscopy

XRD:

x-ray diffraction

bcc:

body-centered cubic

bct:

body-centered tetragonal

fcc:

face-centered cubic

hcp:

hexagonal closed packed

p.t.o.:

power take-off

References

  1. W. Martienssen, H. Warlimont (eds.): Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  2. R.J. Silbey, R.A. Alberty, M.G. Bawendi: Physical Chemistry, 4th edn. (Wiley, Hoboken 2005)

    Google Scholar 

  3. C. Kittel: Introduction to Solid State Physics, 8th edn. (Wiley, Chichester 2004)

    Google Scholar 

  4. R.W. Cahn, P. Haasen, E.J. Kramer: Materials Science and Technology. In: Glasses and Amorphous Materials, Vol. 9, ed. by J. Zarzycki (Wiley-VCH, Weinheim 2005)

    Google Scholar 

  5. A. Inoue, T. Zhang, T. Masumoto: Production of amorphous cylinder and sheet of La_55Al_25Ni_20 alloy by a metallic mold casting method, Mater. Trans. JIM 31, 425 (1990)

    Google Scholar 

  6. A. Peker, W.L. Johnson: Example, Appl. Phys. Lett. 63, 2342 (1993)

    Google Scholar 

  7. A. Leonhard, L.Q. **ng, M. Heilmaier, A. Gebert, J. Eckert, L. Schultz: Effect of crytalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys, Nanostructured Mater. 10, 805 (1998)

    Google Scholar 

  8. A. Inoue: Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48, 279 (2000)

    Google Scholar 

  9. R. Tilley: Crystals and Crystal Structures (Wiley, Chichester 2006)

    Google Scholar 

  10. R.W. Cahn, P. Haasen: Physical Metallurgy, Vol. 1–3, 4th edn. (North Holland, Amsterdam 1996)

    Google Scholar 

  11. D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd edn. (Chapman Hall, London 1997)

    Google Scholar 

  12. D.B. Williams, C.B. Carter: Transmission Electron Microscopy, Vol. 1–4 (Plenum, New York 1996)

    Google Scholar 

  13. G.E. Dieter: Mechanical Metallurgy, SI Metric Edition (McGraw-Hill, London 1988)

    Google Scholar 

  14. J. Gurland: Stereology and Qualitative Metallography, ASTM. STP. 504, 108 (1972)

    Google Scholar 

  15. E.O. Hall: The deformation and aging of mild steel: III discussion of results, Proc. Roy. Soc. B 64, 747 (1951)

    Google Scholar 

  16. N.J. Petch: The cleavage strength of polycrystals, J. Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  17. B. Reppich: Particle strengthening. In: Materials Science and Technology, Vol. 6 (Wiley-VCH, Weinheim 2005) pp. 312–357

    Google Scholar 

  18. H.E. Exner, M. Rettenmayr, C. Müller: Komplexe Grenzflächengeometrien bei Phasenumwandlungen, Prakt. Metallogr. 41, 443–458 (2004)

    Google Scholar 

  19. V.K. Pecharsky, P. Zavalij: Fundamentals of Powder Diffraction and Structural Characterization of Materials (Kluwer Academic, Dordrecht 2003)

    Google Scholar 

  20. D.J. Dyson: X-ray and Electron Diffraction Studies in Materials Science (Maney, London 2004)

    Google Scholar 

  21. F.H. Chung, D.K. Smith: Industrial Applications of X-ray Diffraction (Dekker, New York 1999)

    Google Scholar 

  22. M. Howes, T. Inoue, G.E. Totten: Handbook of Residual Stress and Deformation of Steel (ASM Int, Materials Park 2002)

    Google Scholar 

  23. V. Randle, O. Engler: Introduction to Texture Analysis (Gordon Breach, Amsterdam 2000)

    Google Scholar 

  24. H.J. Bunge: Texture Analysis in Materials Science, Mathematical Methods (Butterworth-Heinemann, London 1982)

    Google Scholar 

  25. G.F. VanderVoort: ASM Handbook: Metallography and Microstructures (ASM Int., Materials Park 2004)

    Google Scholar 

  26. B. Bousfield: Surface Preparation and Microscopy of Materials (Wiley, Chichester 1992)

    Google Scholar 

  27. G. Petzow, V. Carle: Metallographic Etching (ASM Int., Materials Park 1999)

    Google Scholar 

  28. L. Reimer: Scanning Electron Microscopy. Physics of Image Formation and Microanalysis (Springer, Berlin 1998)

    Google Scholar 

  29. J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, C. Fiori, E. Lifshin: Scanning Electron Microscopy and X-ray Microanalysis (Plenum, New York 1992)

    Google Scholar 

  30. W. Hauffe, R. Behrisch, K. Wittmaack: Sputtering by Particle Bombardment III, Topics in Appl. Phys. 64, 111 (1991)

    Google Scholar 

  31. L.A. Giannuzzi, F.A. Stevie: Introduction to Focused Ion Beams (Springer, New York 2004)

    Google Scholar 

  32. B.W. Kempshall, S.M. Schwarz, B.I. Prenitzer, L.A. Giannuzzi, R.B. Irwin, F.A. Stevie: Ionchanneling effects on the focused ion beam milling of Cu, J. Vac. Sci. Technol. B 19, 749–754 (2001)

    Google Scholar 

  33. L. Reimer: Transmission Electron Microscopy. Physics of Image Formation and Microanalysis (Springer, Berlin 2006)

    Google Scholar 

  34. C.C. Ahn, M.M. Disko, B. Fultz: Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas (Wiley-VCH, Weinheim 2004)

    Google Scholar 

  35. J.P. Eberhart: Structural and Chemical Analysis of Materials (Wiley, Chichester 1991)

    Google Scholar 

  36. V.D. Scott, G. Love, S.J.B. Reed: Quantitative Electron Probe Microanalysis (Ellis Horwood, New York 1995)

    Google Scholar 

  37. A.J. Schwartz, M. Kumar, B.L. Adams: Electron Backscatter Diffraction in Materials Science (Kluwer Academic, New York 2000)

    Google Scholar 

  38. D.J. Dingley, K.Z. Baba-Kishi, V. Randle: Atlas of Backscattering Kikuchi Diffraction Patterns (IOP, Bristol 1995)

    Google Scholar 

  39. D. Katrakova, F. Mücklich: Specimen preparation for electron backscatter diffraction – Part I: Metals, Pract. Metallog. 38, 547–565 (2001)

    Google Scholar 

  40. D. Katrakova, F. Mücklich: Specimen preparation for electron backscatter diffraction – Part II: Ceramics, Pract. Metallog. 39, 644–662 (2002)

    Google Scholar 

  41. R.P. Goehner, J.R. Michael: Phase identification in a scanning electron microscope using backscattered electron kikuchi patterns, J. Res. Natl. Inst. Stand. Technol. 101, 301 (1996)

    Google Scholar 

  42. R.A. Schwarzer, A. Huot: The study of microstructure on a mesoscale by ACOM, Cryst. Res. Technol. 35, 851–862 (2000)

    Google Scholar 

  43. E.E. Underwood: Quantitative Stereology (Addison-Wesley, Reading 1970)

    Google Scholar 

  44. J. Ohser, F. Mücklich: Statistical Analysis of Microstructures in Materials Science (Wiley, Chichester 2000)

    MATH  Google Scholar 

  45. H.E. Exner: Quantitative description of microstructures by image analysis. In: Materials Science and Technology, Vol. 2B, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim 1994), pp 281-350

    Google Scholar 

  46. E.E. Underwood: Metals Handbook, Vol. 9, ed. by K Mills (ASM, Materials Park 1992) p. 123

    Google Scholar 

  47. ISO: ISO 9042:1988: Steel – Manual Point Counting Method for Statistically Estimating the Volume Fraction of a Constituent with a Point Grid (ISO, Geneva 1988)

    Google Scholar 

  48. ISO: ISO 14250:2000 Steel – Metallographic Characterization of Duplex Grain Size and Distributions (ISO, Geneva 2000)

    Google Scholar 

  49. ASTM: Practice E1245-03: Standard Practice for Determining the Inclusion or Second-Phase Constituent Content of Metals by Automatic Image Analysis (ASTM, Philadelphia 2003)

    Google Scholar 

  50. ISO: ISO 945:1975: Cast Iron – Designation of Microstructure of Graphite (ISO, Geneva 1975)

    Google Scholar 

  51. ISO: ISO 2624:1990: Copper and Copper Alloys – Estimation of Average Grain Size (ISO, Geneva 1990)

    Google Scholar 

  52. ASTM: ASTM E112-96: Standard Test Methods for Determining Average Grain Size (ASTM, Philadelphia 2004)

    Google Scholar 

  53. ISO: ISO 643-2003: Steels – Micrographic Determination of the Apparent Grain Size (ISO, Geneva 2003)

    Google Scholar 

  54. D.R. Askeland: The Science and Engineering of Materials, S.I., 3rd edn. (Wiley-VCH, Weinheim 1996)

    Google Scholar 

  55. H.J. Frost, M.F. Ashby: Deformation Mechanism Maps (Oxford Univ. Press, Oxford 1982)

    Google Scholar 

  56. O.D. Sherby, J. Wadsworth: Superplasticity – Recent advances and future directions, Prog. Mater. Sci. 33, 169 (1989)

    Google Scholar 

  57. S. Suresh: Fatigue of Materials (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  58. Annual Book of ASTM Standards, Vol. 03.01 (ASTM, Philadelphia 1998)

    Google Scholar 

  59. J. Buschow: Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam 2006)

    Google Scholar 

  60. S. Ness, C.N. Sherlock, P.O. Moore, P. McIntire: NDT Handbook, Overview, Vol. 10, 2nd edn. (ASNT, Columbus 1996)

    Google Scholar 

  61. H. Blumenauer: Werkstoffprüfung (Deutscher Verlag Grundstoffindustrie, Leipzig Stuttgart 1994), in German

    Google Scholar 

  62. W. Grellmann, S. Seidler: Kunststoffprüfung (Carl-Hanser, München Wien 2005), in German

    Google Scholar 

  63. K. Nitsche: Schichtmeßtechnik (Vogel, Würzburg 1997), in German

    Google Scholar 

  64. S. Steeb: Zerstörungsfreie Werkstoff- und Werkstück- prüfung (Expert, Ehningen 2004), in German

    Google Scholar 

  65. J. Krautkrämer, H. Krautkrämer: Ultrasonic Testing of Materials (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  66. A.S. Birks, R.E. Green Jr., P. McIntire: Ultrasonic Testing, NDT Handbook, Vol. 7, 2nd edn. (ASNT, Columbus 1991)

    Google Scholar 

  67. U. Netzelmann, H. Reiter, Y. Shi, J. Wang, M. Maisl: Ceramic automotive valves – Chances and limitations of nondestructive testing, e-J. NDT 2, 7 (1997), http://www.ndt.net

    Google Scholar 

  68. I. Hertlin, T. Herkel: Riss- und Gefügeprüfung mit akustischer Resonanzanalyse im Schall- und Ultraschallbereich für Kfz-Sicherheitsteile (Annu. Conf. DGZfP, Mainz 2003), V18

    Google Scholar 

  69. R.K. Miller, E.V.K. Hill: Acoustic Emission Testing, NDT Handbook, Vol. 6, 3rd edn. (ASNT, Columbus 2005)

    Google Scholar 

  70. S. Roderick, P.O. Moore, P. McIntire: Special Nondestructive Methods, NDT Handbook, Vol. 9, 2nd edn. (ASNT, Columbus 1995)

    Google Scholar 

  71. B.G. Livschitz: Physikalische Eigenschaften der Metalle und Legierungen (Deutscher Verlag Grundstoffindustrie, Leipzig 1989), in German

    Google Scholar 

  72. J.T. Schmidt, K. Skeie, P. McIntire: Magnetic Particle Testing, NDT Handbook, Vol. 6, 2nd edn. (ASNT, Columbus 1989)

    Google Scholar 

  73. H. Heptner, H. Stroppe: Magnetische und magnetinduktive Werkstoffprüfung (Deutscher Verlag Grundstoffindustrie, Leipzig 1972), in German

    Google Scholar 

  74. W. Morgner, F. Michel: Some New Results in Nondestructive Case Depth Measurement (9th European Conference on NDT, Berlin 2006), Paper 118

    Google Scholar 

  75. W.D. Feist, G. Mook, J.H. Hinken, J. Simonin, H. Wrobel: Electromagnetic detection and characterization of tungsten carbide inclusions in non-ferromagnetic alloys, Adv. Eng. Mat. 7(9), 841–846 (2005)

    Google Scholar 

  76. W. Willmann, G. Wollmann: Der Barkhausen-Effekt und seine technische Nutzung, Exp. Techn. Phys. 31, 533–543 (1983)

    Google Scholar 

  77. G. Dobmann: Nondestructive Testing of Laser Processing of Material, Workshop on Laser Techniques (2003)

    Google Scholar 

  78. I. Altpeter, J. Bender, J. Hoffmann, D. Rouget: Barkhausen-Effect and Eddy-Current Testing for the Characterization of the Microstructure and Residual Stress States with Local Resolution, In: EURO MAT ʼ97: Characterization and Production/Design, Vol. 4 (Society for Materials Science, Zwijndrecht 1997) pp. 123–128

    Google Scholar 

  79. S. Udpa, P.O. Moore: Electromagnetic Testing, NDT Handbook, Vol. 5, 3rd edn. (ASNT, Columbus 2004)

    Google Scholar 

  80. R. Zoughi: Microwave Nondestructive Testing and Evaluation – A Graduate Textbook (Kluwer Academic, Dordrecht 2000)

    Google Scholar 

  81. A.J. Bahr: Microwave Nondestructive Testing Methods (Gordon Breach, New York 1982)

    Google Scholar 

  82. G. Busse: Zerstörungsfreie Kunststoffprüfung. In: Kunststoffprüfung, ed. by W. Grellmann, S. Seidler (Carl-Hanser, München, Wien 2005)

    Google Scholar 

  83. X.V.P. Maldague, P.O. Moore: Infrared and Thermal Testing, NDT Handbook, Vol. 3, 3rd edn. (ASNT, Columbus 2001)

    Google Scholar 

  84. S.R. Lampman, T.B. Zorc, H.J. Frissell, G.M. Crankovic, A.W. Ronke: Nondestructive Evaluation and Quality Control, ASM Handbook 17 (ASM International, Materials Park 1989)

    Google Scholar 

  85. N. Tracy, P.O. Moore: Liquid Pentrant Testing, NDT Handbook, Vol. 2, 3rd edn. (ASNT, Columbus OH 1999)

    Google Scholar 

  86. W.J. Bisle, D. Scherling, M.K. Kalms, W. Osten: Improved shearography for use on optical non cooperating surfaces under daylight conditions, AIP Conf. Proc. 557(1), 1928–1935 (2001)

    Google Scholar 

  87. R.H. Bossi, F.A. Iddings, G.C. Wheeler, P.O. Moore: Radiographic Testing, NDT Handbook, Vol. 4, 3rd edn. (ASNT, Columbus 2002)

    Google Scholar 

  88. R. Glocker: Materialprüfung mit Röntgenstrahlen (Springer, Berlin, Heidelberg 1985), in German

    Google Scholar 

  89. G. Mook, J. Pohl, F. Michel: Non-destructive characterization of smart CFRP structures, Smart Mater. Struct. 12, 997–1004 (2003)

    Google Scholar 

  90. J. Pohl, S. Herold, G. Mook, F. Michel: Damage detection in smart CFRP composites using impedance spectroscopy, Smart Mater. Struct. B 10, 834–842 (2001)

    Google Scholar 

  91. H. Speckmann, R. Henrich: Structural Health Monitoring (SHM) – Overview on Airbus Activities (16th World Conf. NDT, Montreal 2004), paper 536

    Google Scholar 

  92. A.K. Mukherjee, J.E. Bird, J.E. Dorn: Experimental correlations for high-temperature creep, Trans. ASM 62, 155 (1969)

    Google Scholar 

  93. W.J. Staszewski, C. Boller, G.R. Tomlinson: Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing (Wiley, New York 2003)

    Google Scholar 

  94. F.-K. Chang (Ed.): Structural Health Monitoring. The Demands and Challenges (CRC Press, Boca Raton 2002)

    Google Scholar 

  95. P.R. Roberge: Corrosion Basics – An Introduction (NACE International, Houston 2006)

    Google Scholar 

  96. K.A. van Oeteren: Korrosionsschutz durch Beschichtungsstoffe (Hanser, München 1980), in German

    Google Scholar 

  97. P. Maaß, P. Peißker: Handbuch Feuerverzinken (Deutscher Verlag Grundstoffindustrie, Stuttgart 1970), in German

    Google Scholar 

  98. U.R. Evans: Some recent work on the corrosion of metals, Metal Ind. 29, 481 (1926)

    Google Scholar 

  99. H. Baum: Untersuchungen zum Mechanismus der Deckschichtbildung beim atmosphärischen Rosten korrosionsträger Stähle Dissertation, Bergakademie Freiberg (1973)

    Google Scholar 

  100. Institut für Korrosionsschutz Dresden: Vorlesungen über Korrosion und Korrosionsschutz (TAW, Wuppertal 1996)

    Google Scholar 

  101. J. Göllner: Elektrochemisches Rauschen unter Korrosionsbedingungen, Habilitation, Otto-von-Guericke-Universität Magdeburg (2002)

    Google Scholar 

  102. T. Shibata: Stochastic approach to the effect of alloying elements on the pitting resistance of ferritic stainless steels, Trans. ISIJ, 23, 785–788 (1983)

    Google Scholar 

  103. H.H. Uhlig: Corrosion and Corrosion Control (Wiley, New York 1971)

    Google Scholar 

  104. K. Mörbe, W. Morenz, H.-W. Pohlmann, H. Werner: Korrosionsschutz wasserführender Anlagen (Springer, Wien 1998)

    Google Scholar 

  105. K.H. Tostmann: Korrosion (Verlag Chemie, Weinheim 2001)

    Google Scholar 

  106. E. Wendler-Kalsch, H. Gräfen: Korrosionsschadenskunde (Springer, Berlin 1998), in German

    Google Scholar 

  107. K. Schilling: Selektive Korrosion hochlegierter Stähle, Dissertation, Otto-von-Guericke-Universität Magdeburg (2005)

    Google Scholar 

  108. H. Kaesche: Corrosion of Metals (Springer, Berlin 2003)

    Google Scholar 

  109. C. Wagner, W. Traud: Über die Deutung von Korrosionsvorgängen durch Überlagerung von elektrochemischen Teilvorgängen und über die Potentialbildung an Mischelektroden, Z. Elektroch. 44, 391–454 (1938), in German

    Google Scholar 

  110. E. Hornbogen, H. Warlimont: Metallkunde (Springer, Berlin 2001), in German

    Google Scholar 

  111. R.W. Cahnn, P. Haasen, E.J. Kramer, M. Schütze: Corrosion and Environmental Degradation, Materials Science and Technology (Wiley-VCH, Weinheim 2000)

    Google Scholar 

  112. W. Schatt, H. Worch: Werkstoffwissenschaft (Deutscher Verlag Grundstoffindustrie, Stuttgart 1996)

    Google Scholar 

  113. R.B. Ross: Metallic Materials Specification Handbook, 4th edn. (Chapman Hall, London 1992)

    Google Scholar 

  114. A. Nayar: The Metals Databook (McGraw-Hill, New York 1997)

    Google Scholar 

  115. M.F. Ashby, D.R.H. Jones: Engineering Materials 2: An Introduction to Microstructures, Processing and Design (Butterworth-Heinemann, Burlington 1998)

    Google Scholar 

  116. A.M. Howatson, P.G. Lund, J.D. Todd: Engineering Tables and Data, 2nd edn. (Chapman Hall, London 1991)

    Google Scholar 

  117. D.K. Roylance: Mechanics of Materials, Massachusetts Institute of Technology Department of Materials Science and Engineering, Cambridge (MIT-DMSE), Material Properties (http://web.mit.edu/course/3/3.11/www/modules/props.pdf)

  118. R.W.K. Honeycombe, H.K.D.H. Bhadeshia: Steels – Microstructure and Properties, 2nd edn. (Edward Arnold, London, New York, Sydney, Auckland 1995)

    Google Scholar 

  119. G. Krauss: Steel – Heat Treatment and Processing Principles (ASM Int., Materials Park 1989)

    Google Scholar 

  120. W.C. Leslie: The Physical Metallurgy of Steels (McGraw-Hill, New York 1981)

    Google Scholar 

  121. A.K. Sinha: Ferrous Physical Metallurgy (Butterworths, London 1989)

    Google Scholar 

  122. D.T. Llewellyn, R.C. Hudd: Steels, Metallurgy and Applications (Butterworth Heinemann, Oxford 1998)

    Google Scholar 

  123. Online Source: Key to Steel: Steel Database on http://www.key-to-steel.com/

  124. H.K.D.H. Bhadeshia: Bainite in Steels, Transformation, Microstructure and Properties (IOM, London 2001)

    Google Scholar 

  125. J.R. Davis: Carbon and Alloy Steels, ASM Speciality Handbook (ASM, Metals Park 1996)

    Google Scholar 

  126. E.C. Bain, H.W. Paxton: Alloying Elements in Steel (ASM, Metals Park 1966)

    Google Scholar 

  127. P.M. Unterweiser: Worldwide Guide to Equivalent Irons and Steels (ASM, Materials Park 1996)

    Google Scholar 

  128. J.E. Bringes: Handbook of Comparative World Steel Standards (ASTM, West Conshohocken 2001)

    Google Scholar 

  129. J.R. Davis: Stainless Steels, ASM Speciality Handbook (ASM, Metals Park 1994)

    Google Scholar 

  130. J.R. Davis: Tool Materials, ASM Specialty Handbook (ASM, Metals Park 1995)

    Google Scholar 

  131. H.E. McGannon: The Making, Sha** and Treatment of Steel (United States Steel Corporation, Pittsburgh 1971)

    Google Scholar 

  132. J.R. Davis: Cast Irons, ASM Specialty Handbook (ASM, Metals Park 1996)

    Google Scholar 

  133. W.G. Moffatt, G.W. Pearsall, J. Wulff: The Structure and Properties of Materials, Structure, Vol. 1 (Wiley, New York 1964), p. 195

    Google Scholar 

  134. Specialty Castings Inc. http://www.specialtycastings.com/ductile_iron.html

  135. G.E. Totten, D.S. MacKenzie: Physical Metallurgy and Processes, Handbook of Aluminum, Vol. 1 (Dekker, New York 2003)

    Google Scholar 

  136. C. Kammer: Fundamentals and Metarials, Aluminium Handbook 1 (Aluminium Verlag, Düsseldorf 2002), in German

    Google Scholar 

  137. J.R. Davis (Ed.): Aluminum and Aluminum Alloys, ASM Specialty Handbook (ASM, Metals Park 1993)

    Google Scholar 

  138. The University of British Columbia, Department of Materials Engineering, Mmat 380: online course material, Heat treatable aluminium alloys, http://www.mmat.ubc.ca/courses/mmat380/default.htm

  139. A. Dehler, S. Knirsch, V. Srivastava, H. Saage, M. Heilmaier: Assessment of creep behaviour of the die-cast cylinder-head alloy AlSi6Cu4-T6, Int. J. Met. Res. 97, 12 (2006)

    Google Scholar 

  140. H. Baker, B. David, K.W. Craig: Metals Hanbook, Vol. 2 (ASM, Metal Parks 1979)

    Google Scholar 

  141. M.M. Avdesian, H. Baker: Magnesium and Magnesium Alloys, ASM Specialty Handbook (ASM, Metals Park 1999)

    Google Scholar 

  142. I.J. Polmear: Light Alloys, Metallurgy of the Light Metals (Wiley, New York 1995)

    Google Scholar 

  143. G. Neite: Structure and properties of nonferrous alloys. In: Materials Science and Technologie, Vol. 8, ed. by K.H. Matucha (Verlag Chemie, Weinheim 1996)

    Google Scholar 

  144. The University of British Columbia, Department of Materials Engineering – mmat 380: online course material, Titanium alloys, http://www.mmat.ubc.ca/courses/mmat380/default.htm

  145. R. Boyer, G. Welsch, E.W. Collings: Materials Properties Hanbook: Titanium Alloys (ASM, Materials Park 1994)

    Google Scholar 

  146. K.H. Matchuta: Structure and properties of nonferrous alloys. In: Matreials Science and Technology, Vol. 8, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH, Weinheim 1996)

    Google Scholar 

  147. W.F. Hosford: Physical Metallurgy (Taylor Francis, New York 2005)

    Google Scholar 

  148. S.C. Huang, J.C. Chessnut: Intermetallic Compounds- Principles and Practice, Vol. 2, Vol. 2, ed. by J.H. Westbrook, R.L. Fleischer (Wiley, Chinchester 1994) p. 73

    Google Scholar 

  149. Forschungszentrum Jülich GmbH: Titan-Aluminid-Legierungen – eine Werkstoffgruppe mit Zukunft (Grafische Betriebe, Forschungszentrum Jülich GmbH, Jülich 2003), in German

    Google Scholar 

  150. K. Otsuka, C.M. Wayman: Shape Memory Materials (Cambridge Univ. Press, Cambridge 1998)

    Google Scholar 

  151. J.R. Davies: Heat-Resistant Materials, ASM Specialty Handbook (ASM Int., Metals Park 1997)

    Google Scholar 

  152. G. Joseph, K.J.A. Kundig: Copper, Its Trade, Manufacture, Use, and Environment Status (ASM Int., Materials Park 1998)

    Google Scholar 

  153. J.R. Davis: Copper and Copper Alloys, ASM Specialty Handbook (ASM, Metals Park 2001)

    Google Scholar 

  154. H. Lipowsky, E. Arpaci: Copper in the Automotive Industry (Wiley-VCH, Weinheim 2006)

    Google Scholar 

  155. J. Brandrup, E.H. Immergut, E.A. Grulke: Polymer Handbook (Wiley, New York 2004)

    Google Scholar 

  156. H.-G. Elias: An Introduction to Polymer Science (Wiley-VCH, Weinheim 1999)

    Google Scholar 

  157. I. Mita, R.F.T. Stepto, U.W. Suter: Basic classification and definitions of polymerization reactions, Pure Appl. Chem. 66, 2483–2486 (1994)

    Google Scholar 

  158. K. Matyjaszewski, T.P. Davis: Handbook of Radical Polymerization (Wiley, New York 2002)

    Google Scholar 

  159. G.W. Ehrenstein, R.P. Theriault: Polymeric Materials: Structure, Properties, Applications (Hanser Gardner, Munich 2000)

    Google Scholar 

  160. G.H. Michler, F.J. Baltá-Calleja: Mechanical Properties of Polymers Based on Nano-Structure and Morphology (CRC, Boca Raton 2005)

    Google Scholar 

  161. A.E. Woodward: Atlas of Polymer Morphology (Hanser Gardner, Munich 1988)

    Google Scholar 

  162. E.A. Campo: The Complete Part Design Handbook for Injection Moulding of Thermoplastics (Hanser, Munich 2006)

    Google Scholar 

  163. D.V. Rosato, A.V. Rosato, D.P. DiMattia: Blow Moulding Handbook (Hanser Gardner, Munich 2003)

    Google Scholar 

  164. L.C.E. Struik: Internal Stresses, Dimensional Instabilities and Molecular Orientations in Plastics (Wiley, New York 1990)

    Google Scholar 

  165. ISO: ISO 1135 parts 1-7:1997: Plastics – Differential Scanning Calorimetry (DSC) – Part 1: General Principles (ISO, Geneva 1997)

    Google Scholar 

  166. T.A. Osswald, G. Menges: Materials Science of Polymers for Engineers (Hanser, Munich 1995)

    Google Scholar 

  167. P.C. Powell: Engineering with Polymers (CRC, Boca Raton 1998)

    Google Scholar 

  168. I.M. Ward, D.W. Hadley: An Introduction to the Mechanical Properties of Solid Polymers (Wiley, Chichester 1993)

    Google Scholar 

  169. H. Czidios, T. Saito, L. Smith (Eds.): Springer Handbook of Materials Measurement Methods (Springer, Berlin, Heidelberg 2006), Chap. 7

    Google Scholar 

  170. I.M. Ward: Structure and Properties of Oriented Polymers (Chapman Hall, London 1997)

    Google Scholar 

  171. ISO: ISO 6721-1:2001 Plastics – Determination of Dynamic Mechanical Properties – Part 1: General Principles; ISO 6721-2: 1994 Plastics – Determination of Dynamic Mechanical Properties – Part 2: Torsion-Pendulum Method (ISO, Geneva 2001)

    Google Scholar 

  172. E.A. Grulke: Solubility parameter values. In: Polymer Handbook 3rd. edn, ed. by J. Brandrup, E.H. Immergut (Wiley, New York 1989), VII/519–557

    Google Scholar 

  173. G.W. Ehrenstein: Faserverbund-Kunststoffe, Werkstoffe – Verarbeitung – Eigenschaften (Hanser, Munich 2006)

    Google Scholar 

  174. L.H. Sperling: Polymeric Multicomponent Materials (Wiley, New York 1997)

    Google Scholar 

  175. C.M. Hansen: Solubility Parameters: A Userʼs Handbook (CRC, Boca Raton 1999)

    Google Scholar 

  176. W.D. Callister Jr.: Fundamentals of Materials Science and Engineering (Wiley, New York 2001)

    Google Scholar 

  177. R. Freer: The Physics and Chemistry of Carbides, Nitrides and Borides (Kluwer, Boston 1989)

    Google Scholar 

  178. M.V. Swain: Structure and Properties of Ceramics, Materials Science and Technology, Vol. 11 (Verlag Chemie, Weinheim 1994)

    Google Scholar 

  179. G.V. Samson: The Oxides Handbook (Plenum, New York 1974)

    Google Scholar 

  180. D. Hull, T.W. Clyne: An Introduction to Composite Materials, 2nd edn. (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  181. J.S. Benjamin: Dispersion strengthened superalloys by mechanical alloying, Metall. Trans. 1, 2943 (1970)

    Google Scholar 

  182. Y. Estrin, S. Arndt, M. Heilmaier, Y. Brechet: Deformation beahviour of particle strengthened alloys: A Voronoi mesh approach, Acta Mater. 47, 595 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jens Freudenberger Dr. , Joachim Göllner Dr. , Martin Heilmaier Prof. , Gerhard Mook Prof. , Holger Saage , Vivek Srivastava Ph.D. or Ulrich Wendt Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Freudenberger, J. et al. (2009). Materials Science and Engineering. In: Grote, KH., Antonsson, E. (eds) Springer Handbook of Mechanical Engineering. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30738-9_3

Download citation

Publish with us

Policies and ethics

Navigation