Forkhead Box O (FoxO) Transcription Factors in Autophagy, Metabolic Health, and Tissue Homeostasis

  • Chapter
  • First Online:
Autophagy in Health and Disease

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

As transcription factors, the forkhead box O family proteins control the expression of genes that are involved in the regulation of autophagy and metabolism. The FoxO–autophagy axis has been shown to mediate cell differentiation and tissue development. Dysregulated FoxO activity may compromise tissue development and homeostasis, concomitant with metabolic abnormalities across tissues such as liver, adipose tissue, skeletal muscle, and heart. In this chapter, we discuss the mechanism or pathways of FoxO transcription factors regulating autophagy and tissue integrity, and the FoxO–autophagy axis in cellular metabolism and fate determination. The evidence summarized here suggests that targeting the FoxO–autophagy axis may lead to therapeutic options for metabolic derangements and cell or tissue dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACO:

Acyl-CoA oxidase

Akt (or PKB):

Protein kinase B

AMPK:

AMP-activated protein kinase

Atg:

Autophagy related protein

C/EBP:

CCAAT/enhancer-binding protein

CD36:

Fatty acid translocase FAT/cluster of differentiation 36

CMV:

Controlled mechanical ventilation

CREB:

cAMP response element binding protein

DBD:

DNA binding domain

ER:

Endoplasmic reticulum

FoxO:

Forkhead box O

FSP27:

Fat-specific protein 27

G6Pase:

Glucose-6-phosphatase

HDAC:

Histone deacetylase

HK:

Hexokinase

JNK:

c-Jun N-terminal kinase

KAA:

Ketogenic amino acid

LC3:

Microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate

LDHA:

Lactate dehydrogenase A

LXR:

Liver X receptor

MI:

Myocardial infarction

MST1:

Mammalian sterile 20-like kinase 1

mTORC1:

Mammalian target of rapamycin complex 1

MTP:

Microsomal tryglyceride transfer protein

MuRF1:

Muscle RING-finger protein-1

NES:

Nuclear export sequence

NLS:

Nuclear localization signal

Pdx1:

Pancreas/duodenum homeobox gene-1

PEPCK:

Phosphoenolpyruvate carboxykinase

PGC1:

Peroxisome proliferator-activated receptor gamma coactivator 1

PI3K:

Phosphatidylinositol 3 kinase

PI3P:

Phoshpatidylinositol 3-phosphate

PKA:

Protein kinase A

PKM2:

Pyruvate kinase isozymes M2

PPARγ:

Peroxisome proliferator-activated receptor γ

RXR:

Retinoid X receptor

Sirt1,2:

sirtuin 1, 2

SKP2:

S-phase kinase-associated protein 2

SQSTM1 (or p62):

Sequestosome 1

SREBP:

Sterol response element-binding protein

STZ:

Streptozotocin

Tfeb:

Transcription factor EB

ULK:

Unc-51-like kinase

VLDL:

Very-low-density lipoprotein

Vps34:

Vacuolar proteins 34

References

  1. Jacobs FM, van der Heide LP, Wijchers PJ, Burbach JP, Hoekman MF, Smidt MP. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003;278:35959–67.

    Article  CAS  PubMed  Google Scholar 

  2. Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000;14:142–6.

    CAS  PubMed  Google Scholar 

  3. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366:461–4.

    Article  CAS  PubMed  Google Scholar 

  4. Lin K, Dorman JB, Rodan A, Kenyon C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science. 1997;278:1319–22.

    Article  CAS  PubMed  Google Scholar 

  5. Ogg S, Paradis S, Gottlieb S, et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997;389:994–9.

    Article  CAS  PubMed  Google Scholar 

  6. Furuyama T, Nakazawa T, Nakano I, Mori N. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J. 2000;349:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene. 2008;27:2263–75.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng Z, White MF. Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models. Antioxid Redox Signal. 2011;14:649–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van der Vos KE, Coffer PJ. The extending network of FOXO transcriptional target genes. Antioxid Redox Signal. 2011;14:579–92.

    Article  PubMed  CAS  Google Scholar 

  10. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A. 2003;100:11285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang H, Regan KM, Wang F, et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci U S A. 2005;102:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–5.

    Article  CAS  PubMed  Google Scholar 

  13. Furuyama T, Kitayama K, Yamashita H, Mori N. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J. 2003;375:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nakae J, Kitamura T, Kitamura Y, Biggs WH 3rd, Arden KC, Accili D. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 2003;4:119–29.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Patil S, Chauhan B, et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem. 2006;281:10105–17.

    Article  CAS  PubMed  Google Scholar 

  16. Kim DH, Zhang T, Lee S, et al. FoxO6 integrates insulin signaling with MTP for regulating VLDL production in the liver. Endocrinology. 2014;155:1255–67.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Calabuig-Navarro V, Yamauchi J, Lee S, et al. Forkhead box O6 (FoxO6) depletion attenuates hepatic gluconeogenesis and protects against fat-induced glucose disorder in mice. J Biol Chem. 2015;290:15581–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee S, Dong HH. FoxO integration of insulin signaling with glucose and lipid metabolism. J Endocrinol. 2017;233:R67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou J, Liao W, Yang J, et al. FOXO3 induces FOXO1-dependent autophagy by activating the AKT1 signaling pathway. Autophagy. 2012;8:1712–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao Y, Yang J, Liao W, et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol. 2010;12:665–75.

    Article  CAS  PubMed  Google Scholar 

  21. Zhao J, Brault JJ, Schild A, et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 2007;6:472–83.

    Article  CAS  PubMed  Google Scholar 

  22. Milan G, Romanello V, Pescatore F, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670.

    Article  CAS  PubMed  Google Scholar 

  23. Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007;6:458–71.

    Article  CAS  PubMed  Google Scholar 

  24. Chi Y, Shi C, Zhao Y, Guo C. Forkhead box O (FOXO) 3 modulates hypoxia-induced autophagy through AMPK signalling pathway in cardiomyocytes. Biosci Rep. 2016;36:e00345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu L, Tao Z, Zheng LD, et al. FoxO1 interacts with transcription factor EB and differentially regulates mitochondrial uncoupling proteins via autophagy in adipocytes. Cell Death Dis. 2016;2:16066.

    Article  Google Scholar 

  26. Liu L, Zheng LD, Zou P, et al. FoxO1 antagonist suppresses autophagy and lipid droplet growth in adipocytes. Cell Cycle. 2016;15:2033–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lopategi A, Lopez-Vicario C, Alcaraz-Quiles J, et al. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol. 2016;419:44–59.

    Article  CAS  PubMed  Google Scholar 

  28. Lanthier N, Leclercq IA. Adipose tissues as endocrine target organs. Best Pract Res Clin Gastroenterol. 2014;28:545–58.

    Article  CAS  PubMed  Google Scholar 

  29. Dowell P, Otto TC, Adi S, Lane MD. Convergence of peroxisome proliferator-activated receptor gamma and Foxo1 signaling pathways. J Biol Chem. 2003;278:45485–91.

    Article  CAS  PubMed  Google Scholar 

  30. Fan W, Imamura T, Sonoda N, et al. FOXO1 transrepresses peroxisome proliferator-activated receptor gamma transactivation, coordinating an insulin-induced feed-forward response in adipocytes. J Biol Chem. 2009;284:12188–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Armoni M, Harel C, Karni S, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigm to increase insulin sensitivity. J Biol Chem. 2006;281:19881–91.

    Article  CAS  PubMed  Google Scholar 

  32. Nakae J, Cao Y, Oki M, et al. Forkhead transcription factor FoxO1 in adipose tissue regulates energy storage and expenditure. Diabetes. 2008;57:563–76.

    Article  CAS  PubMed  Google Scholar 

  33. **g E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bai L, Pang WJ, Yang YJ, Yang GS. Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem. 2008;307:129–40.

    Article  CAS  PubMed  Google Scholar 

  35. Higuchi M, Dusting GJ, Peshavariya H, et al. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev. 2013;22:878–88.

    Article  CAS  PubMed  Google Scholar 

  36. Kim H, Hiraishi A, Tsuchiya K, Sakamoto K. (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology. 2010;62:245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Munekata K, Sakamoto K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim. 2009;45:642–51.

    Article  CAS  PubMed  Google Scholar 

  38. Zou P, Liu L, Zheng L, et al. Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle. 2014;13:3759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27:2320–36.

    Article  CAS  PubMed  Google Scholar 

  40. Samuel VT, Choi CS, Phillips TG, et al. Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes. 2006;55:2042–50.

    Article  CAS  PubMed  Google Scholar 

  41. Titchenell PM, Chu Q, Monks BR, Birnbaum MJ. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in vivo. Nat Commun. 2015;6:7078.

    Article  CAS  PubMed  Google Scholar 

  42. Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest. 2006;116:2464–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamagate A, Qu S, Perdomo G, et al. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J Clin Invest. 2008;118:2347–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Altomonte J, Cong L, Harbaran S, et al. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest. 2004;114:1493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qu S, Su D, Altomonte J, et al. PPAR{alpha} mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab. 2007;292:E421–34.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang K, Li L, Qi Y, et al. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice. Endocrinology. 2012;153:631–46.

    Article  CAS  PubMed  Google Scholar 

  47. Tao R, **ong X, DePinho RA, Deng CX, Dong XC. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6. J Lipid Res. 2013;54:2745–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A. Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J. 2007;21:3431–41.

    Article  PubMed  CAS  Google Scholar 

  49. Sugita S, Kamei Y, Akaike F, et al. Increased systemic glucose tolerance with increased muscle glucose uptake in transgenic mice overexpressing RXRgamma in skeletal muscle. PLoS One. 2011;6:e20467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kamei Y, Mizukami J, Miura S, et al. A forkhead transcription factor FKHR up-regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett. 2003;536:232–6.

    Article  CAS  PubMed  Google Scholar 

  51. Bastie CC, Nahle Z, McLoughlin T, et al. FoxO1 stimulates fatty acid uptake and oxidation in muscle cells through CD36-dependent and -independent mechanisms. J Biol Chem. 2005;280:14222–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kamei Y, Miura S, Suganami T, et al. Regulation of SREBP1c gene expression in skeletal muscle: role of retinoid X receptor/liver X receptor and forkhead-O1 transcription factor. Endocrinology. 2008;149:2293–305.

    Article  CAS  PubMed  Google Scholar 

  53. Nakashima K, Yakabe Y. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci Biotechnol Biochem. 2007;71:1650–6.

    Article  CAS  PubMed  Google Scholar 

  54. Manfredi LH, Zanon NM, Garofalo MA, Navegantes LC. Kettelhut IC (2013) Effect of short-term cold exposure on skeletal muscle protein breakdown in rats. J Appl Physiol. 1985;115:1496–505.

    Article  CAS  Google Scholar 

  55. Kamei Y, Miura S, Suzuki M, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem. 2004;279:41114–23.

    Article  CAS  PubMed  Google Scholar 

  56. Murtaugh LC. Pancreas and beta-cell development: from the actual to the possible. Development. 2007;134:427–38.

    Article  CAS  PubMed  Google Scholar 

  57. Straub SG, Sharp GW. Glucose-stimulated signaling pathways in biphasic insulin secretion. Diabetes Metab Res Rev. 2002;18:451–63.

    Article  CAS  PubMed  Google Scholar 

  58. Kitamura T, Nakae J, Kitamura Y, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002;110:1839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kobayashi M, Kikuchi O, Sasaki T, et al. FoxO1 as a double-edged sword in the pancreas: analysis of pancreas- and beta-cell-specific FoxO1 knockout mice. Am J Physiol Endocrinol Metab. 2012;302:E603–13.

    Article  CAS  PubMed  Google Scholar 

  60. Gupta D, Leahy AA, Monga N, Peshavaria M, Jetton TL, Leahy JL. Peroxisome proliferator-activated receptor gamma (PPARgamma) and its target genes are downstream effectors of FoxO1 protein in islet beta-cells: mechanism of beta-cell compensation and failure. J Biol Chem. 2013;288:25440–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu Y, Wang X, Wu H, et al. Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. Am J Physiol Regul Integr Comp Physiol. 2016;311:R365–73.

    Article  PubMed  Google Scholar 

  62. Kitamura YI, Kitamura T, Kruse JP, et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005;2:153–63.

    Article  CAS  PubMed  Google Scholar 

  63. Kawamori D, Kaneto H, Nakatani Y, et al. The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J Biol Chem. 2006;281:1091–8.

    Article  CAS  PubMed  Google Scholar 

  64. Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14:2201–14.

    Article  CAS  PubMed  Google Scholar 

  65. Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32.

    Article  CAS  PubMed  Google Scholar 

  66. Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell. 2008;19:5360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Matsunaga K, Saitoh T, Tabata K, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009;11:385–96.

    Article  CAS  PubMed  Google Scholar 

  68. Obara K, Noda T, Niimi K, Ohsumi Y. Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells. 2008;13:537–47.

    Article  CAS  PubMed  Google Scholar 

  69. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q. Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 2008;105:19211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Q, Fan W, Zhong Q. Regulation of Beclin 1 in autophagy. Autophagy. 2009;5:713–6.

    Article  CAS  PubMed  Google Scholar 

  71. Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6:764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Egan DF, Shackelford DB, Mihaylova MM, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.

    Article  CAS  PubMed  Google Scholar 

  74. Mizushima N, Yamamoto A, Hatano M, et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol. 2001;152:657–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hanada T, Noda NN, Satomi Y, et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem. 2007;282:37298–302.

    Article  CAS  PubMed  Google Scholar 

  76. Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005;171:603–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.

    Article  CAS  PubMed  Google Scholar 

  78. Rogov V, Dotsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 2014;53:167–78.

    Article  CAS  PubMed  Google Scholar 

  79. **ong X, Tao R, DePinho RA, Dong XC. The autophagy-related gene 14 (Atg14) is regulated by forkhead box O transcription factors and circadian rhythms and plays a critical role in hepatic autophagy and lipid metabolism. J Biol Chem. 2012;287:39107–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284:28319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Settembre C, Di Malta C, Polito VA, et al. TFEB links autophagy to lysosomal biogenesis. Science. 2011;332:1429–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Settembre C, De Cegli R, Mansueto G, et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol. 2013;15:647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Singh R, **ang Y, Wang Y, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009;119:3329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, ** S. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A. 2009;106:19860–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang C, He Y, Okutsu M, et al. Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARgamma2 degradation. Am J Physiol Endocrinol Metab. 2013;305:E530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Puri V, Ranjit S, Konda S, et al. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A. 2008;105:7833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang H, Liu L, Lin JZ, Aprahamian TR, Farmer SR. Browning of white adipose tissue with roscovitine induces a distinct population of UCP1+ adipocytes. Cell Metab. 2016;24:835–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Taylor D, Gottlieb RA. Parkin-mediated mitophagy is downregulated in browning of white adipose tissue. Obesity (Silver Spring). 2017;25:704–12.

    Article  CAS  Google Scholar 

  89. Kalinovich AV, de Jong JM, Cannon B, Nedergaard J. UCP1 in adipose tissues: two steps to full browning. Biochimie. 2017;134:127–37.

    Article  CAS  PubMed  Google Scholar 

  90. Xu L, Kanasaki M, He J, et al. Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules. Biochim Biophys Acta. 2013;1832:1605–12.

    Article  CAS  PubMed  Google Scholar 

  91. Song YM, Lee YH, Kim JW, et al. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway. Autophagy. 2015;11:46–59.

    Article  PubMed  CAS  Google Scholar 

  92. Ratti F, Ramond F, Moncollin V, et al. Histone deacetylase 6 is a FoxO transcription factor-dependent effector in skeletal muscle atrophy. J Biol Chem. 2015;290:4215–24.

    Article  CAS  PubMed  Google Scholar 

  93. O’Neill BT, Lee KY, Klaus K, et al. Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. J Clin Invest. 2016;126:3433–46.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Brault JJ, Jespersen JG, Goldberg AL. Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem. 2010;285:19460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wei B, Dui W, Liu D, **ng Y, Yuan Z, Ji G. MST1, a key player, in enhancing fast skeletal muscle atrophy. BMC Biol. 2013;11:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee D, Goldberg AL. SIRT1 protein, by blocking the activities of transcription factors FoxO1 and FoxO3, inhibits muscle atrophy and promotes muscle growth. J Biol Chem. 2013;288:30515–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bertaggia E, Coletto L, Sandri M. Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol. 2012;302:C587–96.

    Article  CAS  PubMed  Google Scholar 

  98. Hussain SN, Mofarrahi M, Sigala I, et al. Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med. 2010;182:1377–86.

    Article  CAS  PubMed  Google Scholar 

  99. Machado J, Manfredi LH, Silveira WA, et al. Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles. Int J Biochem Cell Biol. 2016;72:40–50.

    Article  CAS  PubMed  Google Scholar 

  100. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107:1470–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Paula-Gomes S, Goncalves DA, Baviera AM, Zanon NM, Navegantes LC, Kettelhut IC. Insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes through AKT/FOXO signaling. Horm Metab Res. 2013;45:849–55.

    Article  CAS  PubMed  Google Scholar 

  102. Zaglia T, Milan G, Franzoso M, et al. Cardiac sympathetic neurons provide trophic signal to the heart via beta2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc Res. 2013;97:240–50.

    Article  CAS  PubMed  Google Scholar 

  103. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE. FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem. 2011;286:7468–78.

    Article  CAS  PubMed  Google Scholar 

  104. Ning Y, Li Z, Qiu Z. FOXO1 silence aggravates oxidative stress-promoted apoptosis in cardiomyocytes by reducing autophagy. J Toxicol Sci. 2015;40:637–45.

    Article  CAS  PubMed  Google Scholar 

  105. Siegrist SE, Haque NS, Chen CH, Hay BA, Hariharan IK. Inactivation of both Foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr Biol. 2010;20:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Xu P, Das M, Reilly J, Davis RJ. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 2011;25:310–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jia K, Thomas C, Akbar M, et al. Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proc Natl Acad Sci U S A. 2009;106:14564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang S, **a P, Huang G, et al. FoxO1-mediated autophagy is required for NK cell development and innate immunity. Nat Commun. 2016;7:11023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Deng Y, Kerdiles Y, Chu J, et al. Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity. 2015;42:457–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Demontis F, Perrimon N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell. 2010;143:813–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bai H, Kang P, Hernandez AM, Tatar M. Activin signaling targeted by insulin/dFOXO regulates aging and muscle proteostasis in Drosophila. PLoS Genet. 2013;9:e1003941.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Akasaki Y, Hasegawa A, Saito M, Asahara H, Iwamoto Y, Lotz MK. Dysregulated FOXO transcription factors in articular cartilage in aging and osteoarthritis. Osteoarthritis Cartilage. 2014;22:162–70.

    Article  CAS  PubMed  Google Scholar 

  113. Chiacchiera F, Matrone A, Ferrari E, et al. p38alpha blockade inhibits colorectal cancer growth in vivo by inducing a switch from HIF1alpha- to FoxO-dependent transcription. Cell Death Differ. 2009;16:1203–14.

    Article  CAS  PubMed  Google Scholar 

  114. Matrone A, Grossi V, Chiacchiera F, et al. p38alpha is required for ovarian cancer cell metabolism and survival. Int J Gynecol Cancer. 2010;20:203–11.

    Article  PubMed  Google Scholar 

  115. Zhang J, Ng S, Wang J, et al. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways. Autophagy. 2015;11:629–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhu WL, Tong H, Teh JT, Wang M. Forkhead box protein O3 transcription factor negatively regulates autophagy in human cancer cells by inhibiting forkhead box protein O1 expression and cytosolic accumulation. PLoS One. 2014;9:e115087.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA National Institute of Food and Agriculture Hatch Project 1007334 (ZC) and American Heart Association Grant 18TPA34230082 (ZC) . The authors declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L., Cheng, Z. (2018). Forkhead Box O (FoxO) Transcription Factors in Autophagy, Metabolic Health, and Tissue Homeostasis. In: Turksen, K. (eds) Autophagy in Health and Disease. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-98146-8_4

Download citation

Publish with us

Policies and ethics

Navigation