Machine Learning for Glass Modeling

  • Chapter
Springer Handbook of Glass

Part of the book series: Springer Handbooks ((SHB))

Abstract

With abundant composition-dependent glass properties data of good quality, machine learning-based models can enable the development of glass compositions with desired properties such as liquidus temperature, viscosity, and Young's modulus using much fewer experiments than would otherwise be needed in a purely experimental exploratory research. In particular, research companies with long track records of exploratory research are in the unique position to capitalize on data-driven models by compiling their earlier internal experiments for research and product development. In this chapter, we demonstrate how Corning has used this unique advantage to develop models based on neural networks and genetic algorithms to predict compositions that will yield a desired liquidus temperature as well as viscosity, Young's modulus, compressive stress, and depth of layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 344.11
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • G. Dreyfus: Neural Networks, Methodology and Applications, 2nd edn. (Springer, Berlin 2004)

    Google Scholar 

  • E.C. Sullivan, W.C. Taylor: US Patent 1304623 (1919)

    Google Scholar 

  • Corning: The History of Corning Innovation, https://www.corning.com/worldwide/en/innovation/culture-of-innovation/the-history-of-corning-innovation.html (2018)

  • National Institute of Standards and Technology: MGI 5th Anniversary Accomplishments, https://mgi.nist.gov/mgi-5th-anniversary-accomplishments (2016)

  • National Institute of Standards and Technology: NIST Standard Reference Database 84, https://www.nist.gov/srd/nist-standard-reference-database-84 (2016)

  • T. Vanderah: NIST Standard Reference Database 31v4.0, https://www.nist.gov/srd/nist-standard-reference-database-31v40 (2016)

  • National Institute of Standards and Technology: NIST Kinetics Database, http://kinetics.nist.gov/kinetics/welcome.jsp (2016)

  • National Institute of Standards and Technology: NIST Standard Reference Database 137, http://srdata.nist.gov/CeramicDataPortal/fracture (2016)

  • National Institute of Standards and Technology: NIST Standard Reference Data Catalog, https://www.nist.gov/srd/srd-catalog (2016)

  • A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1(1), 011002 (2013)

    Google Scholar 

  • C.E. Campbell: ASM Structural Materials Data Demonstration Project, https://mgi.nist.gov/asm-structural-mateirals-data-demonstration-project (2016)

  • M.C. Brady, A. Catel, P. Dessauw, A.A. Dima, B. Long, X. Schmitt, G.S. Amaral, C.E. Campbell, U.R. Kattner, Z. Trautt: Materials Data Curation System, https://mgi.nist.gov/materials-data-curation-system (2016)

  • R. Plante, C.A. Becker: Materials Resource Registry, https://mgi.nist.gov/materials-resource-registry (2016)

  • C.E. Campbell, U.R. Kattner: Materials Informatics, https://mgi.nist.gov/calphad-data-informatics (2016)

  • B.P. Burton, F. Tavazza: Density Functional Theory (DFT) Informatics and Repositories, https://mgi.nist.gov/density-functional-theory-dft-informatics-and-repositories (2016)

  • National Institute of Standards and Technology: Web Force-Field (WebFF), from https://mgi.nist.gov/web-force-field-webff (2016)

  • Computational Materials Repository: https://cmr.fysik.dtu.dk/

  • D.D. Landis, J.S. Hummelshoj, S. Nestorov, J. Greeley, M. Dulak, T. Bligaard, J.K. Norskov, K.W. Jacobsen: The Computational Materials Repository, IEEE Comput. Sci. Eng. 14, 51 (2012)

    Article  Google Scholar 

  • J. Hill, G. Mulholland, K. Persson, R. Seshadri, C. Wolverton, B. Meredig: Materials science with large-scale data and informatics: Unlocking new opportunities, MRS Bull. 41, 399 (2016)

    Article  CAS  Google Scholar 

  • A.G. Kusne, T. Gao, A. Mehta, L. Ke, M.C. Nguyen, K.-M. Ho, V. Antropov, C.-Z. Wang, M.J. Kramer, C. Long, I. Takeuchi: On-the-fly machine-learning for high-throughput experiments: Search for rare-earth-free permanent magnets, Sci. Rep. 4, 6367 (2014)

    Article  Google Scholar 

  • S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, G. Ceder: Predicting crystal structures with data mining of quantum calculations, Phys. Rev. Lett. 91, 135503 (2003)

    Article  Google Scholar 

  • S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy: The high-throughput highway to computational materials design, Nat. Mater. 12, 191 (2013)

    Article  CAS  Google Scholar 

  • I. Takeuchi, O.O. Famodu, J.C. Read, M.A. Aronova, K.-S. Chang, C. Craciunescu, S.E. Lofland, M. Wuttig, F.C. Wellstood, L. Knauss, A. Orozco: Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads, Nat. Mater. 2, 180 (2003)

    Article  CAS  Google Scholar 

  • G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad: Accelerating materials property predictions using machine learning, Sci. Rep. 3, 2810 (2013)

    Article  Google Scholar 

  • R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chrisholm, H. Lam: Combinatorial and high-throughput screening of materials libraries: Review of state of the art, ACS. Comb. Sci. 13, 579 (2011)

    Article  CAS  Google Scholar 

  • X.-D. **ang, X. Sun, G. Briceno, Y. Lou, K.-A. Wang, H. Chang, W.G. Wallace-Freedman, S.-W. Chen, P.G. Schultz: A combinatorial approach to materials discovery, Science 268, 1738 (1995)

    Article  CAS  Google Scholar 

  • H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P.G. Schultz, X.-D. **ang, R.P. Sharma, M. Downes, T. Venkatesan: Combinatorial synthesis and high throughput evaluation of ferroelectric/dielectric thin-film libraries for microwave applications, Appl. Phys. Lett. 72, 2185 (1998)

    Article  CAS  Google Scholar 

  • J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, I. Takeuchi: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater. 5, 286 (2006)

    Article  CAS  Google Scholar 

  • J.-C. Zhao: A combinatorial approach for structural materials, Adv. Eng. Mater. 3, 143 (2001)

    Article  CAS  Google Scholar 

  • H. Hänsel, H. Zettl, G. Krausch, C. Schmitz, R. Kisselev, M. Thelakkat, H.-W. Schmidt: Combinatorial study of the long-term stability of organic thin-film solar cells, Appl. Phys. Lett. 81, 2106 (2002)

    Article  Google Scholar 

  • E. Danielson, M. Devenney, D.M. Giaquinta, J.H. Golden, R.C. Haushalter, E.W. McFarland, D.M. Poojary, C.M. Reaves, W.H. Weinberg, X.D. Wu: A rare-earth phosphor containing one-dimensional chains identified through combinatorial methods, Science 279, 837 (1998)

    Article  CAS  Google Scholar 

  • A.C. Cooper, L.H. McAlexander, D.-H. Lee, M.T. Torres, R.H. Crabtree: Reactive dyes as a method for rapid screening of homogeneous catalysts, J. Am. Chem. Soc. 120, 9971 (1998)

    Article  CAS  Google Scholar 

  • X. Zhang, L. Yu, A. Zakutayev, A. Zunger: Sorting stable versus unstable hypothetical compounds: The case of multi-functional ABX half-Heusler filled tetrahedral structures, Adv. Func. Mater. 22, 1425 (2012)

    Article  CAS  Google Scholar 

  • E.D. Palik (Ed.): Handbook of Optical Constants of Solids (Academic, Burlington 1998)

    Google Scholar 

  • P. Villars (Ed.): Pearson's Handbook Desk Edition (ASM International, Materials Park 1997)

    Google Scholar 

  • O. Kubaschewski, C.B. Alcock (Eds.): Metallurgical Thermochemistry, 5th edn. (Pergamon Press, Oxford 1979)

    Google Scholar 

  • A.G. Kusne, D. Keller, A. Anderson, A. Zaban, I. Takeuchi: High-throughput determination of structural phase diagram and constituent phases using GRENDEL, Nanotechnology 26(44), 444002 (2015)

    Article  CAS  Google Scholar 

  • M.C. Onbaşlı, A. Tandia, J.C. Mauro: Mechanical and Compositional Design of High-Strength Corning Gorilla® Glass. In: Handbook of Materials Modeling, 2nd edn., Vol. 2, ed. by W. Andreoni, S. Yip (Springer, Cham 2019)

    Google Scholar 

  • T. Mueller, A.G. Kusne, R. Ramprasad: Machine Learning in Materials Science: Recent progress and emerging applications. In: Reviews in Computational Chemistry, ed. by A.L. Parrill, K.B. Lipkowitz (2016), https://doi.org/10.1002/9781119148739.ch4

    Chapter  Google Scholar 

  • S.V. Kalinin, B.G. Sumpter, R.K. Archibald: Big–deep–smart data in imaging for guiding materials design, Nat. Mater. 14, 973 (2015)

    Article  CAS  Google Scholar 

  • S. Ullman, T. Poggio, D. Harari, D. Zysman, D. Seibert: Massachusetts Institute of Technology 9.54: Computational aspects of biological learning. In: fall 2014 course notes, http://www.mit.edu/~9.54/fall14/slides/Class13.pdf

  • I.T. Jolliffe: Principal Component Analysis (Springer, New York 2002)

    Google Scholar 

  • M. Ringner: What is principal component analysis?, Nat. Biotechnol. 26, 303 (2008)

    Article  CAS  Google Scholar 

  • S. Kullback, R.A. Leibler: On information and sufficiency, Ann. Math. Stat. 22, 79 (1951)

    Article  Google Scholar 

  • S. Kullback: Information Theory and Statistics (Wiley, New York 1959)

    Google Scholar 

  • B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. de Freitas: Taking the human out of the loop: A review of Bayesian optimization, Proc. IEEE 104, 148 (2016)

    Article  Google Scholar 

  • J.C. Mauro, Y. Yue, A. Ellison, P.K. Gupta, D.C. Allan: Viscosity of glass forming liquids, PNAS 160(47), 19780–19784 (2009)

    Article  Google Scholar 

  • H. Vogel: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten, Phys. Z. 22, 645–646 (1921)

    CAS  Google Scholar 

  • Materials Innovation Case Study: Corning's Gorilla Glass 3 for consumer electronics 2016), https://mgi.nist.gov/sites/default/files/uploads/user124/Materials Innovation Case Study_Gorilla Glass 3_020816.pdf

    Google Scholar 

  • J.C. Mauro: Grand challenges in glass science, Front. Mater. 1, 20 (2014)

    Google Scholar 

Download references

Acknowledgements

Section 33.4.4 was reprinted (adapted) with permission from J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, and M.M. Smedskjaer: Accelerating the design of functional glasses through modeling, Chemistry of Materials 28, 4267–4277 (2016). Copyright (2016) The American Chemical Society. Adama Tandia would like to thank Russell Magaziner for valuable discussions regarding the content and flow of the document, Deenamma Varghese and Venkatesh Botu for many discussions about applications of machine learning to glass properties predictions, colleagues at Corning, too many to list, for valuables suggestions and feedback during many years of ML tools development and validation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adama Tandia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Tandia, A., Onbasli, M.C., Mauro, J.C. (2019). Machine Learning for Glass Modeling. In: Musgraves, J.D., Hu, J., Calvez, L. (eds) Springer Handbook of Glass. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-93728-1_33

Download citation

Publish with us

Policies and ethics

Navigation