Physical and Mathematical Description of the Manifestation of Wave Properties of Matter in Thermodynamic and Dynamic Processes of Spontaneous Structuring of Density-Unstable Masses

  • Chapter
  • First Online:
The Earth's Dissipative Structures

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

The natural science of geology is in the first place a descriptive science; nevertheless, in this field a large body of accumulated empirical material is unified at the level of the fundamental laws of nature in the language of modern physics and mathematics. In this connection, we can state that with the development of various physical and mathematical methods for describing the processes of spontaneous structuring of density-unstable media, their wave nature becomes more and more evident regardless of the causes (whether thermodynamic or dynamic) of this instability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Graham A. Shear patterns in an unstable layer of air. Philos. Trans. Royal Soc. London. Ser. A. 1933; 232(714):285–296.

    Article  Google Scholar 

  • Palm E. J. Fluid Mech. 1960; 8.

    Google Scholar 

  • Segel L.A., Stuart J.T. On the question of the preferred mode in cellular thermal convection. J. Fluid Mech. 1962; 13(2):289–306.

    Article  Google Scholar 

  • Busse F.H. Nonlinear properties of thermal convection. Res. Prog. Phys. 1978; 41:1931–1965.

    Article  Google Scholar 

  • Karpov N.V., Kirichenko N.A. Oscillations, waves, structures. M.: Fizmatlit; 2001. (In Russ.).

    Google Scholar 

  • Saetzman B. Finite amplitude free convection as an initial value problem. Pt. 1. J. Atmosph. Scie. 1962; 19(4):329–341.

    Google Scholar 

  • Lorenz E. Deterministic nonperiodic flows. J. of Atmosph. Sc. 1963; 20:130–141.

    Article  Google Scholar 

  • Nikolis G., Prigogine I. Exploring Complexity. M.: Mir; 1990. (In Russ.).

    Google Scholar 

  • Poincaré H. About science. M.: Nauka; 1983. (In Russ.).

    Google Scholar 

  • Prigogine I.R., Stengers I. Time, chaos, quantum. On the solution of the paradox of time. M.: Editorial URSS; 2001. (In Russ.).

    Google Scholar 

  • Gibbs J.W. Elementary principles in statistical mechanics, developed with especial reference to the rational foundations of thermodynamics. New York: C. Scribner’s sons; 1902.

    Google Scholar 

  • Koopman B.O. Hamiltonian Systems and Transformation in Hilbert Space. Proc. Nat. Acad. Sci. USA. 1931; 17(5):315–318.

    Article  Google Scholar 

  • Prigogine I.R. Nonequilibrium statistical mechanics. Ed. N.D. Zubarev. M.: Mir; 1964. (In Russ.).

    Google Scholar 

  • Prigogine I.R. The end of certainty. Time, chaos and new laws of nature. Izhevsk: NITs “Regulyarnaya i khaoticheskaya dinamika”; 2000. (In Russ.).

    Google Scholar 

  • Thorpe S.A. On the shape of progressive internal waves. Philos. Trans. Royal Soc. London. Ser. A. 1968; 263(1145):563–614.

    Article  Google Scholar 

  • Giterman M.Sh., Shteinberg V.A. Izv. AN SSSR. MZhG. 1972; 2:55-61. (In Russ.).

    Google Scholar 

  • Landau L.D., Lifshits E.M. Theoretical physics. Fluid dynamics. M.: Nauka; 1988. (In Russ.).

    Google Scholar 

  • Turner J. Buoyancy effects in fluids. M.: Mir; 1977. (In Russ.).

    Google Scholar 

  • Davis S.H., Muller U., Dietsche C. Pattern selection in singlecomponent systems coupling Bénard convection and solidification. J. Fluid Mech. 1984; 144:133–151.

    Article  Google Scholar 

  • Nguyen T.H. et al. Influence of thermosolutal convection on the solidification front during upwards solidification. J. Fluid Mech. 1989; 204:581–597.

    Google Scholar 

  • Prandtl L. Hydroaeromechanics. 2nd ed. M.: IL.; 1951. (In Russ.).

    Google Scholar 

  • Bolt B.A. In the depths of the Earth: what do earthquakes tell. M.: Mir; 1984. (In Russ.).

    Google Scholar 

  • Kurdyumov S.P., Malinetskii G.G., Potapov A.B. Synergetics - new directions. M.: Znanie. 1989; 11. (In Russ.).

    Google Scholar 

  • Stork K., Muller U. Convection in boxes: an experimental investigations in vertical cylinders and annuli. J. Fluid Mech. 1975; 71(2):231–239.

    Article  Google Scholar 

  • Turcotte D., Schubert J. Geodynamics: geological applications of the physics of continuous media. M.: Mir; 1985. (In Russ.).

    Google Scholar 

  • Thi H.N., Billia B., Jamgotchian H. Influence of thermosolutal convection on the solidification front during upwards solidification. J. Fluid Mech. 1989; 204:581–597.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Petrov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrov, O.V. (2019). Physical and Mathematical Description of the Manifestation of Wave Properties of Matter in Thermodynamic and Dynamic Processes of Spontaneous Structuring of Density-Unstable Masses. In: The Earth's Dissipative Structures. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-93614-7_2

Download citation

Publish with us

Policies and ethics

Navigation