Nanocarbons in Li-Ion Batteries

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Abstract

The ever-increasing demand for advanced power sources with higher energy density and various form factors strongly pushes us to search for new battery materials and structures beyond current state-of-the-art Li-ion batteries (LIBs). Recent progress in nanoscience and nanotechnology suggests opportunities to develop novel electrode materials and architectures for next-generation Li-ion batteries. Among numerous nanomaterials reported to date, nanocarbons have garnered considerable attention as a promising battery element to enrich electrode chemistry and materials. Of various nanocarbons, carbon nanotube and graphene exhibit outstanding electrical and mechanical properties, large surface area, and unique structural characteristics, which thus bring significant improvements in electrochemical performance and flexibility/design diversity of lithium-based power sources. Here, we describe current status and challenges of nanocarbons in LIBs, with a particular focus on their potential application to anode materials, conductive agents, current collectors, and structure-directing substances for electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  2. Tollefson J (2008) Car industry: charging up the future. Nat News 456:436–440

    Article  Google Scholar 

  3. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  Google Scholar 

  4. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ Sci 5:7854–7863

    Article  Google Scholar 

  5. Diouf B, Pode R (2015) Potential of lithium-ion batteries in renewable energy. Renew Energy 76:375–380

    Article  Google Scholar 

  6. Bauer S (2013) Flexible electronics: sophisticated skin. Nat Mater 12:871–872

    Article  Google Scholar 

  7. Lee S-Y, Choi K-H, Choi W-S, Kwon YH, Jung H-R, Shin H-C, Kim JY (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ Sci 6:2414–2423

    Article  Google Scholar 

  8. Gogotsi Y (2014) Materials science: energy storage wrapped up. Nature 509:568–570

    Article  Google Scholar 

  9. Chabot V, Higgins D, Yu A, **ao X, Chen Z, Zhang J (2014) A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 7:1564–1596

    Article  Google Scholar 

  10. Liu W, Song MS, Kong B, Cui Y (2017) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater 29:1603436

    Article  Google Scholar 

  11. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    Article  Google Scholar 

  12. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  Google Scholar 

  13. Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534

    Article  Google Scholar 

  14. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    Article  Google Scholar 

  15. Winter M, Besenhard JO, Spahr ME, Novák P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763

    Article  Google Scholar 

  16. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    Article  Google Scholar 

  17. Besenhard JO, Fritz HP (1983) The electrochemistry of black carbons. Angew Chem Int Ed 22:950–975

    Article  Google Scholar 

  18. Magerl A, Zabel H, Anderson I (1985) In-plane jump diffusion of Li in LiC6. Phys Rev Lett 55:222

    Article  Google Scholar 

  19. Langer J, Epp V, Heitjans P, Mautner F, Wilkening M (2013) Lithium motion in the anode material LiC6 as seen via time-domain 7Li NMR. Phys Rev B 88:094304

    Article  Google Scholar 

  20. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55:6332–6341

    Article  Google Scholar 

  21. Yata S et al (1994) Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage. Synth Met 62:153–158

    Article  Google Scholar 

  22. Takami N, Satoh A, Hara M, Ohsaki T (1995) Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes. J Electrochem Soc 142:2564–2571

    Article  Google Scholar 

  23. Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–590

    Article  Google Scholar 

  24. Tatsumi K, Akai T, Imamura T, Zaghib K, Iwashita N, Higuchi S, Sawada Y (1996) 7Li-nuclear magnetic resonance observation of lithium insertion into mesocarbon microbeads. J Electrochem Soc 143:1923–1930

    Article  Google Scholar 

  25. Liu Y, Xue J, Zheng T, Dahn J (1996) Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34:193–200

    Article  Google Scholar 

  26. Lee S-J, Nishizawa M, Uchida I (1999) Fabrication of mesophase pitch carbon thin film electrodes and the effect of heat treatment on electrochemical lithium insertion and extraction. Electrochim Acta 44:2379–2383

    Article  Google Scholar 

  27. Mochida I, Ku C-H, Korai Y (2001) Anodic performance and insertion mechanism of hard carbons prepared from synthetic isotropic pitches. Carbon 39:399–410

    Article  Google Scholar 

  28. Ohzuku T, Iwakoshi Y, Sawai K (1993) Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell. J Electrochem Soc 140:2490–2498

    Article  Google Scholar 

  29. Sato K, Noguchi M, Demachi A, Oki N, Endo M (1994) A mechanism of lithium storage in disordered carbons. Science 264:556–559

    Article  Google Scholar 

  30. Yazami R, Deschamps M (1995) High reversible capacity carbon-lithium negative electrode in polymer electrolyte. J Power Sources 54:411–415

    Article  Google Scholar 

  31. Peled E, Menachem C, Bar-Tow D, Melman A (1996) Improved graphite anode for lithium-ion batteries chemically bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143:L4–L7

    Article  Google Scholar 

  32. Tokumitsu K, Fujimoto H, Mabuchi A, Kasuh T (2000) Structural characterization and electrochemical properties of non-graphitizable carbons for a lithium ion battery. J Power Sources 90:206–213

    Article  Google Scholar 

  33. Seger L, Wen LQ, Schlenoff JB (1991) Prospects for using C60 and C70 in lithium batteries. J Electrochem Soc 138:L81–L82

    Article  Google Scholar 

  34. Chabre Y et al (1992) Electrochemical intercalation of lithium into solid fullerene C60. J Am Chem Soc 114:764–766

    Article  Google Scholar 

  35. Loutfy RO, Katagiri S (2002) Fullerene materials for lithium-ion battery applications. Perspectives of fullerene nanotechnology. Springer, Berlin, pp 357–367

    Google Scholar 

  36. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  37. Bachilo SM, Strano MS, Kittrell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  Google Scholar 

  38. Ebbesen T, Lezec H, Hiura H, Bennett J, Ghaemi H, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  Google Scholar 

  39. Kim P, Shi L, Majumdar A, McEuen P (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  40. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975

    Article  Google Scholar 

  41. Yu M-F, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640

    Article  Google Scholar 

  42. Fujigaya T, Nakashima N (2008) Methodology for homogeneous dispersion of single-walled carbon nanotubes by physical modification. Polym J 40:577–589

    Article  Google Scholar 

  43. Jakubek ZJ, Simard B (2004) Two confined phases of argon adsorbed inside open single walled carbon nanotubes. Langmuir 20:5940–5945

    Article  Google Scholar 

  44. Jiang J, Sandler SI (2004) Nitrogen and oxygen mixture adsorption on carbon nanotube bundles from molecular simulation. Langmuir 20:10910–10918

    Article  Google Scholar 

  45. Heroux L, Krungleviciute V, Calbi MM, Migone AD (2006) CF4 on carbon nanotubes: physisorption on grooves and external surfaces. J Phys Chem B 110:12597–12602

    Article  Google Scholar 

  46. Kondratyuk P, Wang Y, Johnson JK, Yates JT (2005) Observation of a one-dimensional adsorption site on carbon nanotubes: adsorption of alkanes of different molecular lengths. J Phys Chem B 109:20999–21005

    Article  Google Scholar 

  47. Cannon JJ, Vlugt TJ, Dubbeldam D, Maruyama S, Shiomi J (2012) Simulation study on the adsorption properties of linear alkanes on closed nanotube bundles. J Phys Chem B 116:9812–9819

    Article  Google Scholar 

  48. Yoo J, Fujigaya T, Nakashima N (2013) Molecular recognition at the nanoscale interface within carbon nanotube bundles. Nanoscale 5:7419–7424

    Article  Google Scholar 

  49. Wang J, Chu H, Li Y (2008) Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2:2540–2546

    Article  Google Scholar 

  50. Zhao J, Buldum A, Han J, Lu JP (2000) First-principles study of Li-intercalated carbon nanotube ropes. Phys Rev Lett 85:1706–1709

    Article  Google Scholar 

  51. Meunier V, Kephart J, Roland C, Bernholc J (2002) Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys Rev Lett 88:075506

    Article  Google Scholar 

  52. Song B, Yang J, Zhao J, Fang H (2011) Intercalation and diffusion of lithium ions in a carbon nanotube bundle by ab initio molecular dynamics simulations. Energy Environ Sci 4:1379–1384

    Article  Google Scholar 

  53. Gao B, Kleinhammes A, Tang X, Bower C, Fleming L, Wu Y, Zhou O (1999) Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem Phys Lett 307:153–157

    Article  Google Scholar 

  54. Maurin G, Bousquet C, Henn F, Bernier P, Almairac R, Simon B (1999) Electrochemical intercalation of lithium into multiwall carbon nanotubes. Chem Phys Lett 312:14–18

    Article  Google Scholar 

  55. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 37:61–69

    Article  Google Scholar 

  56. Gao B et al (2000) Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem Phys Lett 327:69–75

    Article  Google Scholar 

  57. Claye AS, Fischer JE, Huffman CB, Rinzler AG, Smalley RE (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147:2845–2852

    Article  Google Scholar 

  58. Yang Z, Wu H (2001) Electrochemical intercalation of lithium into carbon nanotubes. Solid State Ionics 143:173–180

    Google Scholar 

  59. Eom J, Kwon H, Liu J, Zhou O (2004) Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD. Carbon 42:2589–2596

    Article  Google Scholar 

  60. Kim YA et al (2006) In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion. Small 2:667–676

    Article  Google Scholar 

  61. Wang XX, Wang JN, Chang H, Zhang YF (2007) Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv Func Mater 17:3613–3618

    Article  Google Scholar 

  62. Landi BJ, Ganter MJ, Schauerman CM, Cress CD, Raffaelle RP (2008) Lithium ion capacity of single wall carbon nanotube paper electrodes. J Phys Chem C 112:7509–7515

    Article  Google Scholar 

  63. Chew SY et al (2009) Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47:2976–2983

    Article  Google Scholar 

  64. Yoon S, Lee S, Kim S, Park K-W, Cho D, Jeong Y (2015) Carbon nanotube film anodes for flexible lithium ion batteries. J Power Sources 279:495–501

    Article  Google Scholar 

  65. Ramos-Sanchez G, Chen G, Harutyunyan A, Balbuena P (2016) Theoretical and experimental investigations of the Li storage capacity in single-walled carbon nanotube bundles. RSC Adv 6:27260–27266

    Article  Google Scholar 

  66. Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  67. Dikin DA et al (2007) Preparation and characterization of graphene oxide paper. Nature 448:457–460

    Article  Google Scholar 

  68. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  69. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energy Environ Sci 4:1113–1132

    Article  Google Scholar 

  70. Novoselov KS, Fal V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    Article  Google Scholar 

  71. Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41:666–686

    Article  Google Scholar 

  72. Gerouki A, Goldner M, Goldner R, Haas T, Liu T, Slaven S (1996) Density of states calculations of small diameter single graphene sheets. J Electrochem Soc 143:L262–L263

    Article  Google Scholar 

  73. Yoo E, Kim J, Hosono E, H-s Zhou, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  Google Scholar 

  74. Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Z (2009) Li storage properties of disordered graphene nanosheets. Chem Mater 21:3136–3142

    Article  Google Scholar 

  75. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053

    Article  Google Scholar 

  76. Pollak E, Geng B, Jeon K-J, Lucas IT, Richardson TJ, Wang F, Kostecki R (2010) The interaction of Li+ with single-layer and few-layer graphene. Nano Lett 10:3386–3388

    Article  Google Scholar 

  77. Uthaisar C, Barone V (2010) Edge effects on the characteristics of Li diffusion in graphene. Nano Lett 10:2838–2842

    Article  Google Scholar 

  78. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471

    Article  Google Scholar 

  79. Varzi A, Täubert C, Wohlfahrt-Mehrens M, Kreis M, Schütz W (2011) Study of multi-walled carbon nanotubes for lithium-ion battery electrodes. J Power Sources 196:3303–3309

    Article  Google Scholar 

  80. Guo** W, Qingtang Z, Zuolong Y, MeiZheng Q (2008) The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes. Solid State Ionics 179:263–268

    Article  Google Scholar 

  81. Mun J et al (2014) New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J Mater Chem A 2:19670–19677

    Article  Google Scholar 

  82. Wu Z et al (2014) Depolarized and fully active cathode based on Li(Ni0.5Co0.2Mn0.3)O2 embedded in carbon nanotube network for advanced batteries. Nano Lett 14:4700–4706

    Article  Google Scholar 

  83. Li X, Kang F, Bai X, Shen W (2007) A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochem Commun 9:663–666

    Article  Google Scholar 

  84. Li X, Kang F, Shen W (2006) A comparative investigation on multiwalled carbon nanotubes and carbon black as conducting additive in LiNi0.7Co0.3O2. Electrochem Solid-State Lett 9:A126–A129

    Article  Google Scholar 

  85. Sotowa C et al (2008) The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. Chemsuschem 1:911–915

    Article  Google Scholar 

  86. Kang B, Ceder G (2009) Battery materials for ultrafast charging and discharging. Nature 458:190–193

    Article  Google Scholar 

  87. Johnson BA, White RE (1998) Characterization of commercially available lithium-ion batteries. J Power Sources 70:48–54

    Article  Google Scholar 

  88. Guo Z, Zhao Z, Liu H, Dou S (2005) Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon 43:1392–1399

    Article  Google Scholar 

  89. Fu Y, Ma R, Shu Y, Cao Z, Ma X (2009) Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications. Mater Lett 63:1946–1948

    Article  Google Scholar 

  90. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  Google Scholar 

  91. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537

    Article  Google Scholar 

  92. Patil N, Aqil A, Ouhib F, Admassie S, Inganäs O, Jérôme C, Detrembleur C (2017) Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv Mater 29:1703373

    Article  Google Scholar 

  93. Choi K-H et al (2014) Heterolayered, one-dimensional nanobuilding block mat batteries. Nano Lett 14:5677–5686

    Article  Google Scholar 

  94. Wei W, Yang S, Zhou H, Lieberwirth I, Feng X, Müllen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914

    Article  Google Scholar 

  95. Chen X, Zhu H, Chen Y-C, Shang Y, Cao A, Hu L, Rubloff GW (2012) MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes. ACS Nano 6:7948–7955

    Article  Google Scholar 

  96. Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760

    Article  Google Scholar 

  97. He J, Chen Y, Li P, Fu F, Wang Z, Zhang W (2015) Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries. J Mater Chemy A 3:18605–18610

    Article  Google Scholar 

  98. Hwa Y, Kim W-S, Hong S-H, Sohn H-J (2012) High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim Acta 71:201–205

    Article  Google Scholar 

  99. Hwang TH, Lee YM, Kong B-S, Seo J-S, Choi JW (2012) Electrospun core–shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807

    Article  Google Scholar 

  100. Liu N, Lu Z, Zhao J, McDowell MT, Lee H-W, Zhao W, Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 9:187–192

    Article  Google Scholar 

  101. Hu L, La Mantia F, Wu H, **e X, McDonough J, Pasta M, Cui Y (2011) Lithium-ion textile batteries with large areal mass loading. Adv Energy Mater 1:1012–1017

    Article  Google Scholar 

  102. Lin H et al (2014) Twisted aligned carbon nanotube/silicon composite fiber anode for flexible wire-shaped lithium-ion battery. Adv Mater 26:1217–1222

    Article  Google Scholar 

  103. Ren J et al (2014) Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew Chem 126:7998–8003

    Article  Google Scholar 

  104. Goyal A, Reddy AL, Ajayan PM (2011) Flexible carbon nanotube–Cu2O hybrid electrodes for li-ion batteries. Small 7:1709–1713

    Article  Google Scholar 

  105. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270

    Article  Google Scholar 

  106. Zeng W, Zheng F, Li R, Zhan Y, Li Y, Liu J (2012) Template synthesis of SnO2/α-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale 4:2760–2765

    Article  Google Scholar 

  107. Liao J-Y, Higgins D, Lui G, Chabot V, **ao X, Chen Z (2013) Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. Nano Lett 13:5467–5473

    Article  Google Scholar 

  108. Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12–C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14:2597–2603

    Article  Google Scholar 

  109. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  110. Einchhorn S et al (2010) Review: current international research into cellulose nanofibres and composites. J Mater Sci 45:1–33

    Article  Google Scholar 

  111. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  112. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  113. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  Google Scholar 

  114. Giese M, Blusch LK, Khan MK, MacLachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed 54:2888–2910

    Article  Google Scholar 

  115. Li Y et al (2015) Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–354

    Article  Google Scholar 

  116. Shafiee H et al (2015) Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci Rep 5:8719

    Article  Google Scholar 

  117. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  Google Scholar 

  118. Hu L, Wu H, La Mantia F, Yang Y, Cui Y (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848

    Article  Google Scholar 

  119. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677

    Article  Google Scholar 

  120. Hu L, Liu N, Eskilsson M, Zheng G, McDonough J, Wågberg L, Cui Y (2013) Silicon-conductive nanopaper for Li-ion batteries. Nano Energy 2:138–145

    Article  Google Scholar 

  121. Cho SJ et al (2015) Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv Func Mater 25:6029–6040

    Article  Google Scholar 

  122. Tian D, Song Y, Jiang L (2013) Patterning of controllable surface wettability for printing techniques. Chem Soc Rev 42:5184–5209

    Article  Google Scholar 

  123. Sousa RE, Costa CM, Lanceros-Méndez S (2015) Advances and future challenges in printed batteries. Chemsuschem 8:3539–3555

    Article  Google Scholar 

  124. Lawes S, Riese A, Sun Q, Cheng N, Sun X (2015) Printing nanostructured carbon for energy storage and conversion applications. Carbon 92:150–176

    Article  Google Scholar 

  125. Aleeva Y, Pignataro B (2014) Recent advances in upscalable wet methods and ink formulations for printed electronics. J Mater Chem C 2:6436–6453

    Article  Google Scholar 

  126. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106:21490–21494

    Article  Google Scholar 

  127. Singh N et al (2012) Paintable battery. Sci Rep 2:481

    Article  Google Scholar 

  128. Choi K-H, Yoo J, Lee CK, Lee S-Y (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9:2812–2821

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program (2018R1A2A1A05019733) and Wearable Platform Materials Technology Center (2016R1A5A1009926) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning. J. Yoo and S.-Y. Lee are co-correspondence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Young Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cho, SK., Yoo, J., Lee, SY. (2019). Nanocarbons in Li-Ion Batteries. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation