Carbon-Based Electrodes and Catalysts for the Electroreduction of Carbon Dioxide (CO2) to Value-Added Chemicals

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Abstract

The electroreduction of carbon dioxide (CO2) to value-added carbon chemical feedstocks could be a sustainable approach for reducing and/or recycling excess CO2 emissions . However, key challenges remain in the development of low-cost catalysts and electrode materials that can enable the active, selective, and stable electroreduction of CO2 to a target product. This chapter highlights some of the recent advances in the development of carbon-based catalysts and electrodes for the electroreduction of CO2, advances that can in principle enable the development of low cost and tunable systems. Also, presented is a summary of the fundamental thermodynamics of CO2 electroreduction, commonly used performance metrics, as well as the overall status of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trends in atmospheric carbon dioxide. National Oceanic and Atmospheric Administration, Earth System Research Laboratory. https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html. Accessed 24 Nov 2017

  2. Hansen J, Kharecha P, Sato M, Masson-Delmotte V, Ackerman F, Beerling DJ, Hearty PJ, Hoegh-Guldberg O, Hsu SL, Parmesan C, Rockstrom J, Rohling EJ, Sachs J, Smith P, Steffen K, Van Susteren L, von Schuckmann K, Zachos JC (2013) Assessing “Dangerous climate change”: required reduction of carbon emissions to protect young people, future generations and nature. Plos One 8(12):e81648. https://doi.org/10.1371/journal.pone.0081648

    Article  Google Scholar 

  3. Feldman DR, Collins WD, Gero PJ, Torn MS, Mlawer EJ, Shippert TR (2015) Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 519(7543):339–343. https://doi.org/10.1038/nature14240

    Article  Google Scholar 

  4. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303. https://doi.org/10.1038/nature11475

    Article  Google Scholar 

  5. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972. https://doi.org/10.1126/science.1100103

    Article  Google Scholar 

  6. Intergovernmental panel on climate change 2013: the physical science basis

    Google Scholar 

  7. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114(3):1709–1742. https://doi.org/10.1021/cr4002758

    Article  Google Scholar 

  8. CO2 utilization focus area. National Energy Technology Laboratory, U.S. Department of Energy. Accessed 24 Nov 2017

    Google Scholar 

  9. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658. https://doi.org/10.1021/cr300463y

    Article  Google Scholar 

  10. Herron JA, Kim J, Upadhye AA, Huber GW, Maravelias CT (2015) A general framework for the assessment of solar fuel technologies. Energy Environ Sci 8(1):126–157. https://doi.org/10.1039/c4ee01958j

    Article  Google Scholar 

  11. Jhong HRM, Ma S, Kenis PJA (2013) Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities. Curr Opin Chem Eng 2(2):191–199. https://doi.org/10.1016/j.coche.2013.03.005

    Article  Google Scholar 

  12. Whipple DT, Kenis PJA (2010) Prospects of CO2 utilization via direct heterogeneous electrochemical reduction. J Phys Chem Lett 1(24):3451–3458. https://doi.org/10.1021/jz1012627

    Article  Google Scholar 

  13. Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF (2014) Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc 136(40):14107–14113. https://doi.org/10.1021/ja505791r

    Article  Google Scholar 

  14. Vasileff A, Zheng Y, Qiao SZ (2017) Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater 7(21). https://doi.org/10.1002/aenm.201700759

  15. Duan XC, Xu JT, Wei ZX, Ma JM, Guo SJ, Wang SY, Liu HK, Dou SX (2017) Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater 29(41). https://doi.org/10.1002/adma.201701784

  16. Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 5(5):7050–7059. https://doi.org/10.1039/c2ee21234j

    Article  Google Scholar 

  17. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Modern aspects of electrochemistry, no 42. Springer, New York, pp 89–189

    Google Scholar 

  18. Hori Y, Wakebe H, Tsukamoto T, Koga O (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal-electrodes in aqueous-media. Electrochim Acta 39(11–12):1833–1839. https://doi.org/10.1016/0013-4686(94)85172-7

    Article  Google Scholar 

  19. Bard AJ, Parsons R, Jordan J (1985) Standard potentials in aqueous solutions. CRC Press, Boca Raton

    Google Scholar 

  20. Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456. https://doi.org/10.1016/j.nanoen.2016.04.009

    Article  Google Scholar 

  21. Kumar B, Brian JP, Atla V, Kumari S, Bertram KA, White RT, Spurgeon JM (2016) New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal Today 270:19–30. https://doi.org/10.1016/j.cattod.2016.02.006

    Article  Google Scholar 

  22. Martin AJ, Larrazabal GO, Perez-Ramirez J (2015) Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis. Green Chem 17(12):5114–5130. https://doi.org/10.1039/c5gc01893e

    Article  Google Scholar 

  23. Larrazabal GO, Martin AJ, Perez-Ramirez J (2017) Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering. J Phys Chem Lett 8(16):3933–3944. https://doi.org/10.1021/acs.jpclett.7b01380

    Article  Google Scholar 

  24. Schwarz HA, Dodson RW (1989) Reduction potentials of CO2 and the alcohol radicals. J Phys Chem 93(1):409–414. https://doi.org/10.1021/j100338a079

    Article  Google Scholar 

  25. Chandrasekaran K, Bockris LM (1987) In-situ spectroscopic investigation of adsorbed intermediate radicals in electrochemical reactions: CO2 on platinum. Surf Sci 185(3):495–514. https://doi.org/10.1016/S0039-6028(87)80173-5

    Article  Google Scholar 

  26. Kortlever R, Shen J, Schouten KJP, Calle-Vallejo F, Koper MTM (2015) Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J Phys Chem Lett. 6(20):4073–4082. https://doi.org/10.1021/acs.jpclett.5b01559

    Article  Google Scholar 

  27. Qiao JL, Liu YY, Hong F, Zhang JJ (2014) A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 43(2):631–675. https://doi.org/10.1039/c3cs60323g

    Article  Google Scholar 

  28. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3(9):1311–1315. https://doi.org/10.1039/c0ee00071j

    Article  Google Scholar 

  29. Verma S, Kim B, Jhong HRM, Ma S, Kenis PJA (2016) a gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9(15):1972–1979. https://doi.org/10.1002/cssc.201600394

    Article  Google Scholar 

  30. Verma S, Hamasaki Y, Kim C, Huang W, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJA (2018) Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3(1):193–198. https://doi.org/10.1021/acsenergylett.7b01096

    Article  Google Scholar 

  31. Chen YH, Li CW, Kanan MW (2012) Aqueous co2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc 134(49):19969–19972. https://doi.org/10.1021/ja309317u

    Article  Google Scholar 

  32. Lu Q, Rosen J, Zhou Y, Hutchings GS, Kimmel YC, Chen JGG, Jiao F (2014) A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 5. https://doi.org/10.1038/ncomms4242

  33. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2:203–215. https://doi.org/10.1016/0304-4203(74)90015-2

    Article  Google Scholar 

  34. Verma S, Lu X, Ma S, Masel RI, Kenis PJA (2016) The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys Chem Chem Phys 18(10):7075–7084. https://doi.org/10.1039/c5cp05665a

    Article  Google Scholar 

  35. Kim B, Ma S, Jhong HRM, Kenis PJA (2015) Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochim Acta 166:271–276. https://doi.org/10.1016/j.electacta.2015.03.064

    Article  Google Scholar 

  36. Ma S, Luo R, Moniri S, Lan Y, Kenis PJA (2014) Efficient electrochemical flow system with improved anode for the conversion of CO2 to CO. J Electrochem Soc 161(10):F1124–F1131. https://doi.org/10.1149/2.1201410jes

    Article  Google Scholar 

  37. Ma S, Lan YC, Perez GMJ, Moniri S, Kenis PJA (2014) Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. Chemsuschem 7(3):866–874. https://doi.org/10.1002/cssc.201300934

    Article  Google Scholar 

  38. Thorson MR, Siil KI, Kenis PJA (2013) Effect of cations on the electrochemical conversion of CO2 to CO. J Electrochem Soc 160(1):F69–F74. https://doi.org/10.1149/2.052301jes

    Article  Google Scholar 

  39. Salehi-Kho** A, Jhong HRM, Rosen BA, Zhu W, Ma SC, Kenis PJA, Masel RI (2013) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117(4):1627–1632. https://doi.org/10.1021/jp310509z

    Article  Google Scholar 

  40. Jhong HRM, Brushett FR, Kenis PJA (2013) The effects of catalyst layer deposition methodology on electrode performance. Adv Energy Mater 3(5):589–599. https://doi.org/10.1002/aenm.201200759

    Article  Google Scholar 

  41. Tornow CE, Thorson MR, Ma S, Gewirth AA, Kenis PJA (2012) Nitrogen-based catalysts for the electrochemical reduction of CO2 to CO. J Am Chem Soc 134(48):19520–19523. https://doi.org/10.1021/ja308217w

    Article  Google Scholar 

  42. Whipple DT, Finke EC, Kenis PJA (2010) Microfluidic reactor for the electrochemical reduction of carbon dioxide: the effect of pH. Electrochem Solid-State Lett 13(9):B109. https://doi.org/10.1149/1.3456590

    Article  Google Scholar 

  43. Ma S, Liu JF, Sasaki K, Lyth SM, Kenis PJA (2017) Carbon foam decorated with silver nanoparticles for electrochemical CO2 conversion. Energy Technol 5(6):861–863. https://doi.org/10.1002/ente.201600576

    Article  Google Scholar 

  44. Delacourt C, Ridgway PL, Kerr JB, Newman J (2008) Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155(1):B42–B49. https://doi.org/10.1149/1.2801871

    Article  Google Scholar 

  45. Dufek EJ, Lister TE, McIlwain ME (2011) Bench-scale electrochemical system for generation of CO and syngas. J Appl Electrochem 41(6):623–631. https://doi.org/10.1007/s10800-011-0271-6

    Article  Google Scholar 

  46. Naughton MS, Brushett FR, Kenis PJA (2011) Carbonate resilience of flowing electrolyte-based alkaline fuel cells. J Power Sources 196(4):1762–1768. https://doi.org/10.1016/j.jpowsour.2010.09.114

    Article  Google Scholar 

  47. Endrődi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janáky C (2017) Continuous-flow electroreduction of carbon dioxide. Prog Energy Combust Sci 62(133–154). https://doi.org/10.1016/j.pecs.2017.05.005

  48. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321). https://doi.org/10.1126/science.aad4998

  49. Khezri B, Fisher AC, Pumera M (2017) CO2 reduction: the quest for electrocatalytic materials. J Mater Chem A 5(18):8230–8246. https://doi.org/10.1039/c6ta09875d

    Article  Google Scholar 

  50. Vesborg PCK, Jaramillo TF (2012) Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv 2(21):7933–7947. https://doi.org/10.1039/c2ra20839c

    Article  Google Scholar 

  51. Rosen BA, Salehi-Kho** A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334(6056):643–644. https://doi.org/10.1126/science.1209786

    Article  Google Scholar 

  52. Kutz RB, Chen QM, Yang HZ, Sajjad SD, Liu ZC, Masel IR (2017) Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol 5(6):929–936. https://doi.org/10.1002/ente.201600636

    Article  Google Scholar 

  53. Yang HZ, Kaczur JJ, Sajjad SD, Masel RI (2017) Electrochemical conversion of CO2 to formic acid utilizing sustainion (TM) membranes. J CO2 Util 20:208–217. https://doi.org/10.1016/j.jcou.2017.04.011

  54. Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M, Kenis PJA (2016) One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J Power Sources 301:219–228. https://doi.org/10.1016/j.jpowsour.2015.09.124

    Article  Google Scholar 

  55. Sharma PP, Zhou XD (2017) Electrocatalytic conversion of carbon dioxide to fuels: a review on the interaction between CO2 and the liquid electrolyte. Wires Energy Environ 6(4). https://doi.org/10.1002/wene.239

  56. Gong KP, Du F, **a ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764. https://doi.org/10.1126/science.1168049

    Article  Google Scholar 

  57. Liu X, Dai LM (2016) Carbon-based metal-free catalysts. Nat Rev Mater 1(11). https://doi.org/10.1038/natrevmats.2016.64

  58. Kim B, Hillman F, Ariyoshi M, Fujikawa S, Kenis PJA (2016) Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J Power Sources 312:192–198. https://doi.org/10.1016/j.jpowsour.2016.02.043

    Article  Google Scholar 

  59. Wang H, Jia J, Song PF, Wang Q, Li DB, Min SX, Qian CX, Wang L, Li YF, Ma C, Wu T, Yuan JY, Antonietti M, Ozin GA (2017) Efficient electrocatalytic reduction of CO2 by nitrogen-doped nanoporous carbon/carbon nanotube membranes: a step towards the electrochemical CO2 refinery. Angew Chem Int Edit 56(27):7847–7852. https://doi.org/10.1002/anie.201703720

    Article  Google Scholar 

  60. Kumar B, Asadi M, Pisasale D, Sinha-Ray S, Rosen BA, Haasch R, Abiade J, Yarin AL, Salehi-Kho** A (2013) Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction. Nat Commun 4. https://doi.org/10.1038/ncomms3819

  61. Varela AS, Sahraie NR, Steinberg J, Ju W, Oh HS, Strasser P (2015) Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew Chem Int Edit 54(37):10758–10762. https://doi.org/10.1002/anie.201502099

    Article  Google Scholar 

  62. Li WL, Seredych M, Rodriguez-Castellon E, Bandosz TJ (2016) Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4. Chemsuschem 9(6):606–616. https://doi.org/10.1002/cssc.201501575

    Article  Google Scholar 

  63. Song YF, Chen W, Zhao CC, Li SG, Wei W, Sun YH (2017) Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol. Angew Chem Int Edit 56(36):10840–10844. https://doi.org/10.1002/anie.201706777

    Article  Google Scholar 

  64. Chai GL, Guo ZX (2016) Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. Chem Sci 7(2):1268–1275. https://doi.org/10.1039/c5sc03695j

    Article  Google Scholar 

  65. Zhang S, Kang P, Ubnoske S, Brennaman MK, Song N, House RL, Glass JT, Meyer TJ (2014) Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc 136(22):7845–7848. https://doi.org/10.1021/ja5031529

    Article  Google Scholar 

  66. Wu JJ, Yadav RM, Liu MJ, Sharma PP, Tiwary CS, Ma LL, Zou XL, Zhou XD, Yakobson BI, Lou J, Ajayan PM (2015) Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9(5):5364–5371. https://doi.org/10.1021/acsnano.5b01079

    Article  Google Scholar 

  67. Sharma PP, Wu JJ, Yadav RM, Liu MJ, Wright CJ, Tiwary CS, Yakobson BI, Lou J, Ajayan PM, Zhou XD (2015) Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew Chem Int Edit 54(46):13701–13705. https://doi.org/10.1002/anie.201506062

    Article  Google Scholar 

  68. Lu XY, Tan TH, Ng YH, Amal R (2016) Highly selective and stable reduction of CO2 to CO by a graphitic carbon nitride/carbon nanotube composite electrocatalyst. Chem-Eur J 22(34):11991–11996. https://doi.org/10.1002/chem.201601674

    Article  Google Scholar 

  69. Jhong HRM, Tornow CE, Smid B, Gewirth AA, Lyth SM, Kenis PJA (2017) A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density. Chemsuschem 10(6):1094–1099. https://doi.org/10.1002/cssc.201600843

    Article  Google Scholar 

  70. Ma S, Luo R, Gold JI, Yu AZ, Kim B, Kenis PJA (2016) Carbon nanotube containing Ag catalyst layers for efficient and selective reduction of carbon dioxide. J Mater Chem A 4(22):8573–8578. https://doi.org/10.1039/c6ta00427j

    Article  Google Scholar 

  71. Jhong HRM, Tornow CE, Kim C, Verma S, Oberst JL, Anderson PS, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJA (2017) Gold nanoparticles on polymer-wrapped carbon nanotubes: an efficient and selective catalyst for the electroreduction of CO2. ChemPhysChem. https://doi.org/10.1002/cphc.201700815

    Article  Google Scholar 

  72. Hossain SS, Rahman SU, Ahmed S (2014) electrochemical reduction of carbon dioxide over CNT-supported nanoscale copper electrocatalysts. J Nanomater. https://doi.org/10.1155/2014/374318

    Article  Google Scholar 

  73. Alves DCB, Silva R, Voiry D, Asefa T, Chhowalla M (2015) Copper nanoparticles stabilized by reduced graphene oxide for CO2 reduction reaction. Mater Renew Sustain 4(1). https://doi.org/10.1007/s40243-015-0042-0

  74. Lei FC, Liu W, Sun YF, Xu JQ, Liu KT, Liang L, Yao T, Pan BC, Wei SQ, **e Y (2016) Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 7. https://doi.org/10.1038/ncomms12697

  75. Song Y, Peng R, Hensley DK, Bonnesen PV, Liang LB, Wu ZL, Meyer HM, Chi MF, Ma C, Sumpter BG, Rondinone AJ (2016) High-selectivity electrochemical conversion of CO2 to ethanol using a copper nanoparticle/N-doped graphene electrode. ChemistrySelect 1(19):6055–6061. https://doi.org/10.1002/slct.201601169

    Article  Google Scholar 

  76. Li Q, Zhu WL, Fu JJ, Zhang HY, Wu G, Sun SH (2016) Controlled assembly of Cu nanoparticles on pyridinic-N rich graphene for electrochemical reduction of CO2 to ethylene. Nano Energy 24:1–9. https://doi.org/10.1016/j.nanoen.2016.03.024

    Article  Google Scholar 

  77. Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL (2015) Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun 51(89):16061–16064. https://doi.org/10.1039/c5cc06051f

    Article  Google Scholar 

  78. Wang HX, Chen YB, Hou XL, Ma CY, Tan TW (2016) Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution. Green Chem 18(11):3250–3256. https://doi.org/10.1039/c6gc00410e

    Article  Google Scholar 

  79. Sun XF, Kang XC, Zhu QG, Ma J, Yang GY, Liu ZM, Han BX (2016) Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes. Chem Sci 7(4):2883–2887. https://doi.org/10.1039/c5sc04158a

    Article  Google Scholar 

  80. Wu JJ, Liu MJ, Sharma PP, Yadav RM, Ma LL, Yang YC, Zou XL, Zhou XD, Vajtai R, Yakobson BI, Lou J, Ajayan PM (2016) Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett 16(1):466–470. https://doi.org/10.1021/acs.nanolett.5b04123

    Article  Google Scholar 

  81. Wu JJ, Ma S, Sun J, Gold JI, Tiwary C, Kim B, Zhu LY, Chopra N, Odeh IN, Vajtai R, Yu AZ, Luo R, Lou J, Ding GQ, Kenis PJA, Ajayan PM (2016) A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat Commun 7. https://doi.org/10.1038/ncomms13869

  82. Zou XL, Liu MJ, Wu JJ, Ajayan PM, Li J, Liu BL, Yakobson BI (2017) How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal 7(9):6245–6250. https://doi.org/10.1021/acscatal.7b01839

    Article  Google Scholar 

  83. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23. https://doi.org/10.1038/Nnano.2011.209

    Article  Google Scholar 

  84. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y (2014) High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Edit 53(3):871–874. https://doi.org/10.1002/anie.201308657

    Article  Google Scholar 

  85. Jiwanti PK, Natsui K, Nakata K, Einaga Y (2016) Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution. RSC Adv 6(104):102214–102217. https://doi.org/10.1039/c6ra20466j

    Article  Google Scholar 

  86. Liu Y, Chen S, Quan X, Yu H (2015) Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc 137(36):11631–11636. https://doi.org/10.1021/jacs.5b02975

    Article  Google Scholar 

  87. Liu Y, Zhang Y, Cheng K, Quan X, Fan X, Su Y, Chen S, Zhao H, Zhang Y, Yu H, Hoffmann MR (2017) Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-Co-doped nanodiamond. Angew Chem Int Edit 56:15607–15611. https://doi.org/10.1002/anie.201706311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. A. Kenis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, S., Nwabara, U.O., Kenis, P.J.A. (2019). Carbon-Based Electrodes and Catalysts for the Electroreduction of Carbon Dioxide (CO2) to Value-Added Chemicals. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation