Adenosine Receptors in Alzheimer’s Disease

  • Chapter
  • First Online:
The Adenosine Receptors

Part of the book series: The Receptors ((REC,volume 34))

Abstract

Adenosine operates its effects through adenosine receptors, which have been proposed to be of particular relevance in neuropathological situations, such as Alzheimer’s disease (AD). AD is characterized by progressive cognitive impairment, synaptic and neuronal loss, formation of amyloid plaques, mainly composed by amyloid-beta (Aβ) peptides, and neurofibrillary tangles as well as neuroinflammation. Epidemiological studies concluded that the regular consumption of caffeine, a nonselective antagonist of adenosine receptors, is inversely correlated with the incidence of AD. Neurochemical data showed an increased A2AR density in the brain of AD patients, and these A2ARs interfere with memory, synaptic plasticity, Aβ production and neurofibrillary tangles formation in AD models. Accordingly, pharmacological blockade or genetic inactivation of A2AR prevents cognitive impairment and affords neuroprotection. However, either the mechanisms or the contribution of A2AR in different cell types for the onset and progression of AD are not completely understood. Until now, it was described that neuronal and astrocytic A2ARs have a role in controlling synaptic plasticity and memory, microglial A2AR modulates neuroinflammation and A2AR in peripheral cells also comes into play in neurodegenerative processes. This chapter will discuss the importance of adenosinergic system in AD patients and experimental models, providing an overview of future adenosine-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  PubMed  CAS  Google Scholar 

  • Agostinho P, Pliássova A, Oliveira CR et al (2015) Localization and trafficking of amyloid-β protein precursor and secretases: impact on Alzheimer’s disease. J Alzheimers Dis 45:329–347

    Article  PubMed  CAS  Google Scholar 

  • Akiyama H, Barger S, Barnum S et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Albasanz JL, Perez S, Barrachina M et al (2008) Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. Brain Pathol 18:211–219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allaman I, Lengacher S, Magistretti PJ et al (2003) A2B receptor activation promotes glycogen synthesis in astrocytes through modulation of gene expression. Am J Phys 284:C696–C704

    Article  CAS  Google Scholar 

  • Angulo E, Casado V, Mallol J et al (2003) A1 adenosine receptors accumulate in neurodegenerative structures in Alzheimer disease and mediate both amyloid precursor protein processing and tau phosphorylation and translocation. Brain Pathol 13:440–451

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Schleif W, Rezai-Zadeh K et al (2006) Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952

    Article  PubMed  CAS  Google Scholar 

  • Arendash GW, Mori T, Cao C et al (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis 17:661–680

    Article  PubMed  CAS  Google Scholar 

  • Batalha VL, Ferreira DG, Coelho JE et al (2016) The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function. Sci Rep 6:31493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertram L, Tanzi RE (2004) Alzheimer’s disease: one disorder, too many genes? Hum Mol Genet 13:R135–R141

    Article  PubMed  CAS  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  PubMed  CAS  Google Scholar 

  • Blennow K, Hampel H, Weiner M et al (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  PubMed  CAS  Google Scholar 

  • Bramblett GT, Goedert M, Jakes R et al (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Burckhardt M, Herke M, Wustmann T et al (2016) Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev 4:CD009002

    Google Scholar 

  • Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011

    Article  PubMed  CAS  Google Scholar 

  • Canas PM, Duarte JM, Rodrigues RJ et al (2009a) Modification upon aging of the density of presynaptic modulation systems in the hippocampus. Neurobiol Aging 30:1877–1884

    Article  PubMed  CAS  Google Scholar 

  • Canas PM, Porciúncula LO, Cunha GM et al (2009b) Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci 29:14741–14751

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cao C, Cirrito JR, Lin X et al (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer’s disease transgenic mice. J Alzheimers Dis 17:681–697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao C, Loewenstein DA, Lin X et al (2012) High blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 30:559–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carman AJ, Mills JH, Krenz A et al (2011) Adenosine receptor signaling modulates permeability of the blood-brain barrier. J Neurosci 31:13272–13280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo CA, Albasanz JL, Leon D et al (2009) Age-related expression of adenosine receptors in brain from the senescence-accelerated mouse. Exp Gerontol 44:453–461

    Article  PubMed  CAS  Google Scholar 

  • Chen JF (2014) Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol 119:257–307

    Article  PubMed  Google Scholar 

  • Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43

    Article  PubMed  CAS  Google Scholar 

  • Chen GJ, Harvey BK, Shen H et al (2006) Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J Neurosci Res 84:1848–1855

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Liu I, Juang S et al (2000) Decrease of adenosine A-1 receptor gene expression in cerebral cortex of aged rats. Neurosci Lett 283:227–229

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casadó V, Rodrigues RJ et al (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Citron M, Diehl TS, Gordon G et al (1996) Evidence that the 42- and 40-amino acid forms of amyloid β protein are generated from the β-amyloid precursor protein by different proteas activities. PNAS 93:13170–13175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cognato GP, Agostinho PM Hockemeyer J et al (2010) Caffeine and an adenosine A2A receptor antagonist prevent memory impairment and synaptotoxicity in adult rats triggered by a convulsive episode in early life. J Neurochem 112:453–462

    Article  PubMed  CAS  Google Scholar 

  • Costenla AR, Diógenes MJ, Canas PM et al (2011) Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34:12–21

    Article  PubMed  Google Scholar 

  • Crous-Bou M, Minguillón C, Gramunt N et al (2017) Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res Ther 9:71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha RA (2016) How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 139:1019–1055

    Article  PubMed  CAS  Google Scholar 

  • Cunha RA, Agostinho PM (2010) Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis 20(Suppl 1):S95–116

    Google Scholar 

  • Cunha RA, Constantino MC, Sebastião AM et al (1995) Modification of A1 and A2A adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6:1583–1588

    Article  PubMed  CAS  Google Scholar 

  • Cunha GM, Canas PM, Melo C et al (2008) Adenosine A2A receptor blockade prevents memory dysfunction caused by beta-amyloid peptides but not by scopolamine or MK-801. Exp Neurol 210:776–781

    Article  PubMed  CAS  Google Scholar 

  • Dall’Igna OP, Porciúncula LO, Souza DO et al (2003) Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol 138:1207–1209

    Article  PubMed  CAS  Google Scholar 

  • Dall’Igna OP, Fett P, Gomes MW et al (2007) Caffeine and adenosine A2A receptor antagonists prevent beta-amyloid25-35-induced cognitive deficits in mice. Exp Neurol 203:241–245

    Article  PubMed  CAS  Google Scholar 

  • de Mendonça A, Sebastião AM, Ribeiro JA (2000) Adenosine: does it have a neuroprotective role after all? Brain Res Rev 33:258–274

    Article  PubMed  Google Scholar 

  • De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603–615

    Google Scholar 

  • Deckert J, Abel F, Künig G et al (1998) Loss of human hippocampal adenosine A1 receptors in dementia: evidence for lack of specificity. Neurosci Lett 244:1–4

    Article  PubMed  CAS  Google Scholar 

  • Dennissen FJ, Anglada-Huguet M, Sydow A et al (2016) Adenosine A1 receptor antagonist rolofylline alleviates axonopathy caused by human tau DeltaK280. PNAS 113:11597–11602

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dickerson BC, Sperling RA (2009) Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behav Neurol 21:63–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Dragicevic N, Delic V, Cao C et al (2012) Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer’s mice and cells. Neuropharmacology 63:1368–1379

    Article  PubMed  CAS  Google Scholar 

  • Duarte JM, Agostinho PM, Carvalho RA et al (2012) Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice. PLoS One 7:e21899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–1127

    Article  PubMed  Google Scholar 

  • Elman JA, Oh H, Madison CM et al (2014) Neural compensation in older people with brain β-amyloid deposition. Nat Neurosci 17:1316–1318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Espinosa J, Rocha A, Nunes F et al (2013) Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis 34:509–518

    Article  PubMed  CAS  Google Scholar 

  • Flaten V, Laurent C, Coelho JE et al (2014) From epidemiology to pathophysiology: what about caffeine in Alzheimer’s disease? Biochem Soc Trans 42:587–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fredholm BB, Bättig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Cunha RA et al (2005) Adenosine and brain function. Int Rev Neurobiol 63:191–270

    Article  PubMed  CAS  Google Scholar 

  • Freedman ND, Park Y, Abnet CC et al (2012) Association of coffee drinking with total and cause-specific mortality. N Engl J Med 366:1891–1904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y et al (2008) Adenosine A1 receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer's disease. Ann Nucl Med 22:841–847

    Google Scholar 

  • Galvão J, Elvas F, Martins T et al (2015) Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration. Exp Eye Res 140:65–74

    Article  PubMed  CAS  Google Scholar 

  • Gomes CV, Kaster MP, Tomé AR et al (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24

    Article  PubMed  Google Scholar 

  • Gussago C, Arosio B, Casati M et al (2014) Different adenosine A2A receptor expression in peripheral cells from elderly patients with vascular dementia and Alzheimer’s disease. J Alzheimers Dis 40:45–49

    Article  PubMed  CAS  Google Scholar 

  • Gyoneva S, Swanger SA, Zhang J et al (2016) Altered motility of plaque-associated microglia in a model of Alzheimer’s disease. Neuroscience 330:410–420

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  • Hooijmans CR, Pasker-de Jong PC, de Vries RB et al (2012) The effects of long-term omega-3 fatty acid supplementation on cognition and Alzheimer’s pathology in animal models of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 28:191–209

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148:1204–1222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Damasio AR et al (1984) Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168–1170

    Article  PubMed  CAS  Google Scholar 

  • Irwin DJ, Cohen TJ, Grossman M et al (2012) Acetylated tau, a novel pathological signature in Alzheimer’s disease and other tauopathies. Brain 135:807–818

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobson KA, von Lubitz DKJE, Daly JW et al (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalaria RN, Sromek S, Wilcox BJ et al (1990) Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. Neurosci Lett 118:257–260

    Article  PubMed  CAS  Google Scholar 

  • Kaster MP, Machado NJ, Silva HB et al (2015) Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. PNAS 112:7833–7838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerkhofs A, Xavier AC, Silva BS et al (2018) Caffeine controls glutamatergic synaptic transmission and pyramidal neuron excitability in human neocortex. Front Pharmacol 8:899

    Article  PubMed  PubMed Central  Google Scholar 

  • Koffie RM, Meyer-Luehmann M, Hashimoto T et al (2009) Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. PNAS 106:4012–4017

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurent C, Eddarkaoui S, Derisbourg M et al (2014) Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiol Aging 35:2079–2090

    Article  PubMed  CAS  Google Scholar 

  • Laurent C, Burnouf S, Ferry B et al (2016) A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiatry 21:97–107

    Article  PubMed  CAS  Google Scholar 

  • Leite MR, Wilhelm EA, Jesse CR et al (2011) Protective effect of caffeine and a selective A2A receptor antagonist on impairment of memory and oxidative stress of aged rats. Exp Gerontol 46:309–315

    Article  PubMed  CAS  Google Scholar 

  • Lemos C, Pinheiro BS, Beleza RO et al (2015) Adenosine A2B receptor activation stimulates glucose uptake in the mouse forebrain. Purinergic Signal 11:561–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lesné SE, Sherman MA, Grant M et al (2013) Brain amyloid-β oligomers in ageing and Alzheimer’s disease. Brain 136:1383–1398

    Article  PubMed  PubMed Central  Google Scholar 

  • Li P, Rial D, Canas PM et al (2015a) Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory. Mol Psychiatry 20:1481

    Article  PubMed  CAS  Google Scholar 

  • Li S, Geiger NH, Soliman ML et al (2015b) Caffeine, through adenosine A3 receptor-mediated actions, suppresses amyloid-beta protein precursor internalization and amyloid-beta generation. J Alzheimers Dis 47:73–83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu CC, Liu CC, Kanekiyo T et al (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999a) Cross talk between A1 and A2A adenosine receptors in the hippocampus and cortex of young adult and old rats. J Neurophysiol 82:3196–3203

    Article  PubMed  CAS  Google Scholar 

  • Lopes LV, Cunha RA, Ribeiro JA (1999b) Increase in the number, G protein coupling, and efficiency of facilitatory adenosine A2A receptors in the limbic cortex, but not striatum, of aged rats. J Neurochem 73:1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Cui J, Li X et al (2016) An anti-Parkinson’s disease drug via targeting adenosine A2A receptor enhances amyloid-beta generation and gamma-secretase activity. PLoS One 11:e0166415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lupien SJ, Nair NP, Brière S et al (1999) Increased cortisol levels and impaired cognition in human aging: implication for depression and dementia in later life. Rev Neurosci 10:117–139

    Article  PubMed  CAS  Google Scholar 

  • Machado NJ, Simões AP, Silva HB et al (2017) Caffeine reverts memory but not mood impairment in a depression-prone mouse strain with up-regulated adenosine A2A receptor in hippocampal glutamate synapses. Mol Neurobiol 54:1552–1563

    Article  PubMed  CAS  Google Scholar 

  • Magistretti PJ, Hof PR, Martin JL (1986) Adenosine stimulates glycogenolysis in mouse cerebral cortex: a possible coupling mechanism between neuronal activity and energy metabolism. J Neurosci 6:2558–2562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maia L, de Mendonça A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9:377–382

    Article  PubMed  CAS  Google Scholar 

  • Mastroeni D, McKee A, Grover A et al (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matos M, Augusto E, Machado NJ et al (2012) Astrocytic adenosine A2A receptors control the amyloid-β peptide-induced decrease of glutamate uptake. J Alzheimers Dis 31:555–567

    Article  PubMed  CAS  Google Scholar 

  • Meerlo P, Roman V, Farkas E et al (2004) Ageing-related decline in adenosine A1 receptor binding in the rat brain: an autoradiographic study. J Neurosci Res 78:742–748

    Article  PubMed  CAS  Google Scholar 

  • Mitchell RM, Neafsey EJ, Collins MA (2009) Essential involvement of the NMDA receptor in ethanol preconditioning-dependent neuroprotection from amyloid-beta in vitro. J Neurochem 111:580–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montine TJ, Koroshetz WJ, Babcock D et al (2014) Recommendations of the Alzheimer’s disease-related dementias conference. Neurology 83:851–860

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreira A, Diógenes MJ, de Mendonça A et al (2016) Chocolate consumption is associated with a lower risk of cognitive decline. J Alzheimers Dis 53:85–93

    Article  PubMed  Google Scholar 

  • Mormino EC, Brandel MG, Madison CM et al (2012) Aβ deposition in aging is associated with increases in brain activation during successful memory encoding. Cereb Cortex 22:1813–1823

    Article  PubMed  Google Scholar 

  • Müller UC, Deller T, Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18:281–298

    Article  PubMed  CAS  Google Scholar 

  • Musiek ES, Holtzman DM (2015) Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci 18:800–806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthaiyah B, Essa MM, Lee M et al (2014) Dietary supplementation of walnuts improves memory deficits and learning skills in transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 42:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Nagpure BV, Bian JS (2014) Hydrogen sulfide inhibits A2A adenosine receptor agonist induced beta-amyloid production in SH-SY5Y neuroblastoma cells via a cAMP dependent pathway. PLoS One 9:e88508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nehlig A (2018) Interindividual differences in caffeine metabolism and their potential impact on caffeine consumption and biological effects. Pharmacol Rev 70:384–411

    Google Scholar 

  • Nehlig A, Daval JL, Debry G (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Rev 17:139–170

    Article  PubMed  CAS  Google Scholar 

  • Ngandu T, Lehtisalo J, Solomon A et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomized controlled trial. Lancet 385:2255–2263

    Article  PubMed  Google Scholar 

  • Orr AG, Hsiao EC, Wang MM et al (2015) Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci 18:423–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orr AG, Lo I, Schumacher H et al (2017) Istradefylline reduces memory deficits in aging mice with amyloid pathology. Neurobiol Dis 110:29–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagnussat N, Almeida AS, Marques DM et al (2015) Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice. Br J Pharmacol 172:3831–3845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagonopoulou O, Angelatou F (1992) Reduction of A1 adenosine receptors in cortex, hippocampus and cerebellum in ageing mouse brain. Neuroreport 3:735–737

    Article  PubMed  CAS  Google Scholar 

  • Panza F, Solfrizzi V, Barulli MR et al (2015) Coffee, tea, and caffeine consumption and prevention of late-life cognitive decline and dementia: a systematic review. J Nutr Health Aging 19:313–328

    Article  PubMed  CAS  Google Scholar 

  • Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  • Petersen RC, Roberts RO, Knopman DS et al (2009) Mild cognitive impairment: ten years later. Arch Neurol 66:1447–1455

    Article  PubMed  PubMed Central  Google Scholar 

  • Pliássova A, Lopes JP, Lemos C et al (2016a) The association of amyloid-β protein precursor with α- and β-secretases in mouse cerebral cortex synapses is altered in early Alzheimer’s disease. Mol Neurobiol 53:5710–5721

    Article  PubMed  CAS  Google Scholar 

  • Pliássova A, Canas PM, Xavier AC et al (2016b) Age-related changes in the synaptic density of amyloid-β protein precursor and secretases in the human cerebral cortex. J Alzheimers Dis 52:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Popp J, Wolfsgruber S, Heuser I et al (2015) Cerebrospinal fluid cortisol and clinical disease progression in MCI and dementia of Alzheimer’s type. Neurobiol Aging 36:601–607

    Article  PubMed  CAS  Google Scholar 

  • Prasanthi JR, Dasari B, Marwarha G et al (2010) Caffeine protects against oxidative stress and Alzheimer’s disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet. Free Radic Biol Med 49:1212–1220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prediger RD, Batista LC, Takahashi RN (2005) Caffeine reverses age-related deficits in olfactory discrimination and social recognition memory in rats. Involvement of adenosine A1 and A2A receptors. Neurobiol Aging 26:957–964

    Article  PubMed  CAS  Google Scholar 

  • Prince M, Comas-Herrera A, Knapp M et al (2016) World Alzheimer report. Alzheimer’s Disease International. https://www.alz.co.uk/research/WorldAlzheimerReport2016.pdf

  • Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. PNAS 98:676–682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajaram S, Valls-Pedret C, Cofán M et al (2017) The walnuts and healthy aging study (WAHA): protocol for a nutritional intervention trial with walnuts on brain aging. Front Aging Neurosci 8:333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebola N, Sebastião AM, de Mendonça A et al (2003) Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J Neurophysiol 90:1295–1303

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Canas PM, Oliveira CR et al (2005) Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience 132:893–903

    Article  PubMed  CAS  Google Scholar 

  • Rebola N, Simões AP, Canas PM et al (2011) Adenosine A2A receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. J Neurochem 117:100–111

    Article  PubMed  CAS  Google Scholar 

  • Rial D, Lemos C, Pinheiro H et al (2016) Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 9:521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodrigues RJ, Canas PM, Lopes LV et al (2008) Modification of adenosine modulation of acetylcholine release in the hippocampus of aged rats. Neurobiol Aging 29:1597–1601

    Article  PubMed  CAS  Google Scholar 

  • Santos C, Costa J, Santos J et al (2010) Caffeine intake and dementia: systematic review and meta-analysis. J Alzheimers Dis 20(Suppl 1):S187–S204

    Article  PubMed  Google Scholar 

  • Scheff SW, Price DA, Schmitt FA et al (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • Sebastião AM, Cunha RA, de Mendonça A et al (2000) Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. Br J Pharmacol 131:1629–1634

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selkoe D, Mandelkow E, Holtzman D (2012) Deciphering Alzheimer disease. Cold Spring Harb Perspect Med 2:a011460

    Article  PubMed  PubMed Central  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E et al (2011) Neuropathological alterations in Alzheimer’s disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simonin C, Duru C, Salleron J et al (2013) Association between caffeine intake and age at onset in Huntington’s disease. Neurobiol Dis 58:179–182

    Article  PubMed  CAS  Google Scholar 

  • Solfrizzi V, Frisardi V, Seripa D et al (2011) Mediterranean diet in predementia and dementia syndromes. Curr Alzheimer Res 8:520–542

    Article  PubMed  CAS  Google Scholar 

  • Solomon A, Kivipelto M, Soininen H (2013) Prevention of Alzheimer’s disease: moving backward through the lifespan. J Alzheimers Dis 1:S465–S469

    Google Scholar 

  • Sperlágh B, Zsilla G, Baranyi M et al (1997) Age-dependent changes of presynaptic neuromodulation via A1 adenosine receptors in rat hippocampal slices. Int J Dev Neurosci 15:739–747

    Article  PubMed  Google Scholar 

  • Sperling RA, Dickerson BC, Pihlajamaki M et al (2010) Functional alterations in memory networks in early Alzheimer’s disease. NeuroMolecular Med 12:27–43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanzi RE (2013) A brief history of Alzheimer’s disease gene discovery. J Alzheimers Dis 33(Suppl 1):S5–S13

    PubMed  Google Scholar 

  • Tariq S, Barber PA (2017) Dementia risk and prevention by targeting modifiable vascular risk factors. J Neurochem 144:565

    Google Scholar 

  • Tentolouris-Piperas V, Ryan NS, Thomas DL et al (2017) Brain imaging evidence of early involvement of subcortical regions in familial and sporadic Alzheimer’s disease. Brain Res 1655:23–32

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  PubMed  CAS  Google Scholar 

  • Tomiyama T, Nagata T, Shimada H et al (2008) A new amyloid beta variant favoring oligomerization in Alzheimer’s-type dementia. Ann Neurol 63:377–387

    Article  PubMed  CAS  Google Scholar 

  • Travassos M, Santana I, Baldeiras I et al (2015) Does caffeine consumption modify cerebrospinal fluid amyloid-β levels in patients with Alzheimer’s disease? J Alzheimers Dis 47:1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Ułas J, Brunner LC, Nguyen L et al (1993) Reduced density of adenosine A1 receptors and preserved coupling of adenosine A1 receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. Neuroscience 5:843–854

    Article  Google Scholar 

  • van Gelder BM, Buijsse B, Tijhuis M et al (2007) Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE study. Eur J Clin Nutr 61:226–232

    Article  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10:241–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viana da Silva S, Haberl MG, Zhang P et al (2016) Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nat Commun 7:11915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vollert C, Forkuo GS, Bond RA et al (2013) Chronic treatment with DCPCX, an adenosine A1 antagonist, worsens long-term memory. Neurosci Lett 548:296–300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiner MW, Veitch DP, Aisen PS et al (2015) 2014 update of the Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 11:e1–e120

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu NY, Bieder A, Raman A et al (2017) Acute doses of caffeine shift nervous system cell expression profiles toward promotion of neuronal projection growth. Sci Rep 7:11458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeitlin R, Patel S, Burgess S et al (2011) Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice. Brain Res 1417:127–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors ‘research was supported by Maratona da Saúde, the European Regional Development Fund (ERDF) through the COMPETE 2020 and Portuguese National Funds (FCT), ref POCI-01-0145-FEDER-007440 and PTDC/NEU-NMC/4154/2014 - AstroA2AR (POCI-01-0145-FEDER-016684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Agostinho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canas, P.M., Cunha, R.A., Agostinho, P. (2018). Adenosine Receptors in Alzheimer’s Disease. In: Borea, P., Varani, K., Gessi, S., Merighi, S., Vincenzi, F. (eds) The Adenosine Receptors. The Receptors, vol 34. Humana Press, Cham. https://doi.org/10.1007/978-3-319-90808-3_11

Download citation

Publish with us

Policies and ethics

Navigation