Dietary Components as Promoters of Medicinal Activity in Alzheimer’s Disease

  • Reference work entry
  • First Online:
Handbook of Computational Neurodegeneration
  • 220 Accesses

Abstract

Alzheimer’s disease (AD) is among the most serious neurodegenerative diseases with poor diagnosis and treatment. AD is one of the most common types of dementia mostly in geriatric population and has been defined as “a public health crisis,” according to Alzheimer’s disease association. Currently, only a few drugs have been approved for clinical use including donepezil, rivastigmine, galantamine, and memantine. Unfortunately, medication regimens to date attenuate symptomatology and despite the improvement in drug discovery and drug development field, there is no existing cure. Computer-aided drug design (CADD) methods are especially important for determining AD-modifying therapeutic targets. The applications of CADD in pharmaceutical community allow clinical pharmacists, medicinal chemists, and other researches to predict the binding affinity between ligands and targets and to understand in-depth these interactions. Molecular docking and other alternative computer-aided drug design methods show that several dietary phytochemicals found mainly in fruits, vegetables, plants, and spices could meet the criteria of novel AD disease-modifying agents. Molecular dynamic simulations and in silico docking studies showed a superior potential of several dietary phytochemicals (caffeine, curcumin, crocus sativus, quercetin, resveratrol, oleuropein, ellagic acid, epigallocatechin-3 gallate, luteolin, astaxanthin, and morin) to act as drug-likeness inhibitors and as promoters of available medication for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 549.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 549.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S et al (2010) A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 207(4):637–643

    Article  CAS  PubMed  Google Scholar 

  • Alam A, Tamkeen N, Imam N, Farooqui A, Ahmed MM, Tazyeen S, … Ishrat R (2018) Pharmacokinetic and molecular docking studies of plant-derived natural compounds to exploring potential anti-Alzheimer activity. In In Silico Approach for Sustainable Agriculture (pp. 217–238). Springer, Singapore.

    Google Scholar 

  • Ashton NJ, Nevado-Holgado AJ, Barber IS, Lynham S, Gupta V, Chatterjee P et al (2019) A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease. Sci Adv 5(2):eaau7220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balasubramanian K (2006) Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J Agric Food Chem 54(10):3512–3520

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46(W1):W257–W263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner P, Jockers R, Ravid R, Angeloni D, Fraschini F (2009) Pineal and cortical melatonin receptors MT1 and MT2 are decreased in Alzheimer’s disease. Eur J Histochem 50(4):311–316

    Google Scholar 

  • Choi DY, Lee YJ, Hong JT, Lee HJ (2012) Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull 87(2-3):144–153

    Article  CAS  PubMed  Google Scholar 

  • Chow VW, Savonenko AV, Melnikova T, Kim H, Price DL, Li T, Wong PC (2010) Modeling an anti-amyloid combination therapy for Alzheimer’s disease. Sci Transl Med 2(13):13ra1–13ra1

    Article  PubMed  PubMed Central  Google Scholar 

  • Decker M (2005) Novel inhibitors of acetyl-and butyrylcholinesterase derived from the alkaloids dehydroevodiamine and rutaecarpine. Eur J Med Chem 40(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Decourt B, Sabbagh MN (2011) BACE1 as a potential biomarker for Alzheimer’s disease. J Alzheimers Dis 24(s2):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delibas N, Tuzmen N, Yonden Z, Altuntas I (2002) Effect of functional pinealectomy on hippocampal lipid peroxidation, antioxidant enzymes and N-methyl-D-aspartate receptor subunits 2A and 2B in young and old rats. Neuroendocrinol Lett 23(4):345–350

    CAS  PubMed  Google Scholar 

  • Dong H, Li J, Huang L, Chen X, Li D, Wang T et al (2015) Serum microRNA profiles serve as novel biomarkers for the diagnosis of Alzheimer’s disease. Dis Markers 2015

    Google Scholar 

  • Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R (2014) ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res 42(W1):W53–W58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fändrich M, Nyström S, Nilsson KPR, Böckmann A, LeVine III H, Hammarström P (2018) Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J Intern Med 283(3):218–237

    Article  PubMed  PubMed Central  Google Scholar 

  • Farokhnia M, Shafiee Sabet M, Iranpour N, Gougol A, Yekehtaz H, Alimardani R et al (2014) Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol Clin Exp 29(4):351–359

    Article  CAS  Google Scholar 

  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N et al (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(5):459–480

    Article  Google Scholar 

  • Ferreira N, Cardoso I, Domingues MR, Vitorino R, Bastos M, Bai G et al (2009) Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 583(22):3569–3576

    Article  CAS  PubMed  Google Scholar 

  • García-Mesa Y, Giménez-Llort L, López LC, Venegas C, Cristòfol R, Escames G et al (2012) Melatonin plus physical exercise are highly neuroprotective in the 3xTg-AD mouse. Neurobiol Aging 33(6):1124–1e13

    Article  Google Scholar 

  • Geromichalos GD, Lamari FN, Papandreou MA, Trafalis DT, Margarity M, Papageorgiou A, Sinakos Z (2012) Saffron as a source of novel acetylcholinesterase inhibitors: molecular docking and in vitro enzymatic studies. J Agric Food Chem 60(24):6131–6138

    Article  CAS  PubMed  Google Scholar 

  • Grüninger-Leitch F, Schlatter D, Küng E, Nelböck P, Döbeli H (2002) Substrate and inhibitor profile of BACE (β-secretase) and comparison with other mammalian aspartic proteases. J Biol Chem 277(7):4687–4693

    Article  PubMed  Google Scholar 

  • Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33(3):422–428

    Article  PubMed  Google Scholar 

  • Hye A, Kerr F, Archer N, Foy C, Poppe M, Brown R, Hamilton G, Powell J, Anderton B, Lovestone S (2005) Glycogen synthase kinase-3 is increased in white cells early in Alzheimer’s disease. Neurosci Lett 373:1–4

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Dinamarca MC, Alvarez A (2008) Amyloid–cholinesterase interactions: implications for Alzheimer’s disease. FEBS J 275(4):625–632

    Article  CAS  PubMed  Google Scholar 

  • Islam MR, Zaman A, Jahan I, Chakravorty R, Chakraborty S (2013) In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J Young Pharm 5(4):173–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson JL, Rupasinghe SG, Stefani F, Schuler MA, Gonzalez de Mejia E (2011) Citrus flavonoids luteolin, apigenin, and quercetin inhibit glycogen synthase kinase-3β enzymatic activity by lowering the interaction energy within the binding cavity. J Med Food 14(4):325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E (2014) Glycogen synthase kinase-3 inhibitors: rescuers of cognitive impairments. Pharmacol Ther 141(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Kostomoiri M, Fragkouli A, Sagnou M, Skaltsounis LA, Pelecanou M, Tsilibary EC, Tzinia AK (2013) Oleuropein, an anti-oxidant polyphenol constituent of olive promotes -secretase cleavage of the Amyloid Precursor Protein (APP). Cell Mol Neurobiol 33:147–154

    Article  CAS  PubMed  Google Scholar 

  • Li AP (2001) Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 6(7):357–366

    Article  CAS  PubMed  Google Scholar 

  • Li SH, Gao P, Wang LT, Yan YH, **a Y, Song J et al (2017) Osthole stimulated neural stem cells differentiation into neurons in an Alzheimer’s disease cell model via upregulation of MicroRNA-9 and rescued the functional impairment of hippocampal neurons in APP/PS1 transgenic mice. Front Neurosci 11:340

    Article  PubMed  PubMed Central  Google Scholar 

  • Lukiw WJ, Pogue AI (2007) Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem 101(9):1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maes OC, Chertkow HM, Wang E, Schipper HM (2009) MicroRNA: implications for Alzheimer disease and other human CNS disorders. Curr Genomics 10(3):154–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandelkow EM, Drewes G, Biernat J, Gustke N, Van Lint J, Vandenheede JV, Mandelkow E (1992) Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Lett 314(3):315–321

    Article  CAS  PubMed  Google Scholar 

  • Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66(22):10843–10848

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Li Y, Li S, Zhou Y, Gan RY, Xu DP, Li HB (2017) Dietary sources and bioactivities of melatonin. Nutrients 9(4):367

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohammadi F, Dehghanian F (2020). In silico Analysis of caffeine effects on NMDA receptor in Alzheimer’s disease. Conference: International Congress of Isfahan Biomedical Sciences (ICIBS)At: Isfahan University of Medical science. https://www.researchgate.net/publication/343055105_In_silico_Analysis_of_caffeine_effects_on_NMDA_receptor_in_Alzheimer’s_disease.

  • Muscat S, Pallante L, Stojceski F, Danani A, Grasso G, Deriu MA (2020) The impact of natural compounds on S-shaped Aβ42 fibril: from molecular docking to biophysical characterization. Int J Mol Sci 21(6):2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olcese JM, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ et al (2009) Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res 47(1):82–96

    Article  CAS  PubMed  Google Scholar 

  • Oz M, Lorke DE, Yang KHS, Petroianu G (2013) On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr Alzheimer Res 10(6):618–630

    Article  CAS  PubMed  Google Scholar 

  • Pandi-Perumal SR, BaHammam AS, Brown GM, Spence DW, Bharti VK, Kaur C et al (2013) Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes. Neurotox Res 23(3):267–300

    Article  CAS  PubMed  Google Scholar 

  • Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M (2011) Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 219(2):197–204

    Article  CAS  PubMed  Google Scholar 

  • Qian W, Li H, Pan N, Zhang C (2018) Curcumin treatment is associated with increased expression of the N-methyl-D-aspartate receptor (NMDAR) subunit, NR2A, in a rat PC12 cell line model of Alzheimer’s disease treated with the acetyl amyloid-β peptide, Aβ (25–35). Med Sci Monit 4:2693

    Article  Google Scholar 

  • Qing X, Lee XY, De Raeymaecker J, Tame JR, Zhang KY, De Maeyer M, Voet A (2014) Pharmacophore modeling: advances, limitations, and current utility in drug discovery. J Recept Ligand Channel Res 7:81–92

    Google Scholar 

  • Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci 6(2):147–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosales-Corral S, Tan DX, Reiter RJ, Valdivia-Velázquez M, Martínez-Barboza G, Pablo Acosta-Martínez J, Ortiz GG (2003) Orally administered melatonin reduces oxidative stress and proinflammatory cytokines induced by amyloid-β peptide in rat brain: a comparative, in vivo study versus vitamin C and E. J Pineal Res 35(2):80–84

    Article  CAS  PubMed  Google Scholar 

  • Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1-3):107–129

    Article  CAS  PubMed  Google Scholar 

  • Sehgal SA, Hammad MA, Tahir RA, Akram HN, Ahmad F (2018) Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design. Curr Neuropharmacol 16(6):649–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma B, Kalita S, Paul A, Mandal B, Paul S (2016) The role of caffeine as an inhibitor in the aggregation of amyloid forming peptides: a unified molecular dynamics simulation and experimental study. RSC Adv 6(82):78548–78558

    Article  CAS  Google Scholar 

  • Silvestro S, Bramanti P, Mazzon E (2019) Role of miRNAs in Alzheimer’s disease and possible fields of application. Int J Mol Sci 20(16):3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonawane SK, Chidambaram H, Boral D, Gorantla NV, Balmik AA, Dangi A et al (2020) EGCG impedes human Tau aggregation and interacts with Tau. Sci Rep 10(1):1–17

    Article  Google Scholar 

  • Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C et al (2010) Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31(9):1561–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiribuzi R, Crispoltoni L, Porcellati S, Di Lullo M, Florenzano F, Pirro M et al (2014) miR128 up-regulation correlates with impaired amyloid β (1-42) degradation in monocytes from patients with sporadic Alzheimer’s disease. Neurobiol Aging 35(2):345–356

    Article  CAS  PubMed  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design-a review. Curr Top Med Chem 10(1):95–115

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ferruzzi MG, Ho L, Blount J, Janle EM, Gong B et al (2012) Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 32(15):5144–5150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson D, Andersen HF (2007) Analysis of the effect of memantine in reducing the worsening of clinical symptoms in patients with moderate to severe Alzheimer’s disease. Dement Geriatr Cogn Disord 24(2):138–145

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Sheng M (2013) NMDA receptors in nervous system diseases. Neuropharmacology 74:69–75

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstathia G. Kalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kalli, E.G. (2023). Dietary Components as Promoters of Medicinal Activity in Alzheimer’s Disease. In: Vlamos, P., Kotsireas, I.S., Tarnanas, I. (eds) Handbook of Computational Neurodegeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-75922-7_39

Download citation

Publish with us

Policies and ethics

Navigation