Computational Modeling of Fluid–Structure Interaction Between Blood Flow and Mitral Valve

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine

Abstract

Mitral valve repair is a complex operation, in which the functionality of incompetent mitral valve is reconstructed by surgical techniques. Simulation-based surgical planning system, allowing surgeons to simulate and compare potential repair strategies, could greatly improve surgical outcomes. This paper presents a practical computational framework, combining the Total Lagrangian Explicit Dynamics Finite Element Method (TLED FEM) and Smoothed Particle Hydrodynamics (SPH), to solve the interaction problem of blood and immersed mitral valves. With this completed pipeline, we can not only predict the mechanical behavior of mitral valve, but also analyze the transvalvular pressures distributed on valve leaflets. The experimental results demonstrate that our method has the potential to be applied in surgical planning simulator of mitral valve repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Iung B, Vahanian A (2011) Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol 8(3):162–172

    Article  Google Scholar 

  2. Vahanian A, Baumgartner H, Bax J, Butchart E, Dion R, Filippatos G, Flachskampf F, Hall R, Iung B, Kasprzak J et al (2007) Guidelines on the management of valvular heart disease. Eur Heart J 28(2):230–268

    Google Scholar 

  3. Gammie JS, OBrien SM, Griffith BP, Ferguson TB, Peterson ED (2007) Influence of hospital procedural volume on care process and mortality for patients undergoing elective surgery for mitral regurgitation. Circulation 115(7):881–887

    Article  Google Scholar 

  4. Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, Ionasec RI, Noack T, Seeburger J, Comaniciu D (2012) An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to mitralclip intervention planning. Med Image Anal 16(7):1330–1346

    Article  Google Scholar 

  5. Kunzelman K, Einstein DR, Cochran R (2007) Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos Trans R Soc Lond B Biol Sci 362(1484):1393–1406

    Article  Google Scholar 

  6. Votta E, Le TB, Stevanella M, Fusini L, Caiani EG, Redaelli A, Sotiropoulos F (2013) Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions. J Biomech 46(2):217–228

    Article  Google Scholar 

  7. Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A, Lombardi M, Parodi O, Caiani EG, Redaelli A (2011) Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc Eng Technol 2(2):66–76

    Article  Google Scholar 

  8. Xu C, Jassar AS, Nathan DP, Eperjesi TJ, Brinster CJ, Levack MM, Vergnat M, Gorman RC, Gorman JH, Jackson BM (2012) Augmented mitral valve leaflet area decreases leaflet stress: a finite element simulation. Ann Thorac Surg 93(4):1141–1145

    Article  Google Scholar 

  9. Hammer PE, Pedro J, Howe RD (2011) Anisotropic mass-spring method accurately simulates mitral valve closure from image-based models. In: Functional imaging and modeling of the heart. Springer, Berlin, pp 233–240

    Chapter  Google Scholar 

  10. Hammer PE, Sacks MS, Pedro J, Howe RD (2011) Mass spring model for simulation of heart valve tissue mechanical behavior. Ann Biomed Eng 39(6):1668–1679

    Article  Google Scholar 

  11. Hammer PE, Chen PC, Pedro J, Howe RD (2012) Computational model of aortic valve surgical repair using grafted pericardium. J Biomech 45(7):1199–1204

    Article  Google Scholar 

  12. Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Method Biomed Eng 28(3):317–345

    Article  MathSciNet  Google Scholar 

  13. Le TB, Sotiropoulos F (2013) Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62

    Article  MathSciNet  Google Scholar 

  14. Einstein DR, Pin FD, Jiao X et al (2010) Fluid-structure interactions of the mitral valve and left heart: comprehensive strategies, past, present and future. Int J Numer Methods Eng 26(3-4):348–380

    MathSciNet  MATH  Google Scholar 

  15. Lau KD, Diaz V, Scambler P et al (2010) Mitral valve dynamics in structural and fluid–structure interaction models. Med Eng Phys 32(9):1057–1064

    Article  Google Scholar 

  16. Mittal R, Seo JH, Vedula V et al (2016) Computational modeling of cardiac hemodynamics: current status and future outlook. J Comput Phys 305:1065–1082

    Article  MathSciNet  Google Scholar 

  17. Otani T, Alissa A, Pourmorteza A et al (2016) A computational framework for personalized blood flow analysis in the human left atrium. Ann Biomed Eng 44:3284–3294

    Article  Google Scholar 

  18. Miller K, Joldes G, Lance D, Wittek A (2007) Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Commun Numer Methods Eng 23(2):121–134

    Article  MathSciNet  Google Scholar 

  19. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    Article  MathSciNet  Google Scholar 

  20. Nesme M, Kry PG, Jerabkova L et al (2009) Preserving topology and elasticity for embedded deformable models. ACM Trans Graph 28(3):52

    Article  Google Scholar 

  21. Poston T, Wong TT, Heng PA (1998) Multiresolution isosurface extraction with adaptive skeleton climbing. Comput Graphics Forum 17(3):137–147. https://doi.org/10.1111/1467-8659.00261

    Article  Google Scholar 

  22. Tao J, Schaefer S, Warren J (2005) Mean value coordinates for closed triangular meshes. ACM Trans Graph 24:561–566

    Article  Google Scholar 

  23. Peskin CS (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  Google Scholar 

  24. Su B, San Tan R, Le Tan J et al (2016) Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J Biomech 49(7):1199–1205

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by grants from Gongdong Natural Science Foundation Project (No. 2016A030313047), Shenzhen Science and Technology Program (No.JCYJ20160429190300857), the Science and Technology Plan Project of Guangzhou (No.201704020141), and National Natural Science Foundation of China (No. 81601576).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Si, W., Liao, X., Qin, J., Heng, P.A. (2019). Computational Modeling of Fluid–Structure Interaction Between Blood Flow and Mitral Valve. In: Nielsen, P., Wittek, A., Miller, K., Doyle, B., Joldes, G., Nash, M. (eds) Computational Biomechanics for Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-75589-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75589-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75588-5

  • Online ISBN: 978-3-319-75589-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation