Molecules in Strong Laser Fields

  • Chapter
  • First Online:
Theoretical Femtosecond Physics

Part of the book series: Graduate Texts in Physics ((GTP))

  • 1737 Accesses

Abstract

Molecules, compared to atoms, have additional degrees of freedom. Not only do the electrons move around the nuclei, but also the nuclei move relative to each other. This allows for a multitude of new phenomena, already without the action of external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 48.14
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 60.98
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 85.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Jacobian determinant, \(\rho \), is essential for the following.

  2. 2.

    We note that there may be an asymmetry as to which proton the electron “belongs to” [16].

  3. 3.

    See also Appendix 3.A for avoided crossings of Floquet states.

  4. 4.

    Some authors use the notation \(\phi _{\nu }(\varvec{x}|\varvec{X})\) or \(\phi _{\nu }(\varvec{x};\varvec{X})\) to express this fact, see also Sect. 2.2.7.

  5. 5.

    This can, e.g., be achieved by putting the molecule in a large box.

  6. 6.

    We will not consider rotational dynamics with the exception of Sect. 5.5.

  7. 7.

    The corresponding vibrational period of HF is 8.4 fs.

  8. 8.

    Note that we are using the symbol for the time-independent nuclear wavefunction also for the time-dependent one.

  9. 9.

    Both potentials, if uncoupled, would show no nonlinearity in the classical dynamics and would be solvable exactly analytically; when coupled, however, the map** Hamiltonian is highly anharmonic!

  10. 10.

    \(\bar{\nu }=\nu /c\) is the wavenumber.

  11. 11.

    Note that the integration boundaries can be shifted to infinity due to the envelope, and the terms \(\mathrm{e}^{\mathrm{i}V_1T_\mathrm{d}}\) and \(\mathrm{e}^{-\mathrm{i}V_0^It}\) drop out by taking the absolute square.

  12. 12.

    The lower time-integration boundary has been shifted to \(-\infty \) to treat pulses that are nonzero at negative times.

  13. 13.

    Note that this initial state is slightly different from the one studied in Appendix 5.D.

  14. 14.

    Exercise 15.11 in [24] sheds more light on what “adiabatically” means in this context.

  15. 15.

    The diagonal matrix elements of the nabla operator vanish exactly, see, e.g., the discussion in Sect. 12.2.1 of [24].

  16. 16.

    Note that the matrix elements are still operators (as indicated by the hat), due to the fact that the integrations in (5.195) are only over electronic coordinates.

  17. 17.

    Please note that in this appendix \(\chi _{j}(x)\) denotes the j-th eigenfunction in the same electronic state (the double well).

References

  1. J.C. Slater, Quantum Theory of Molecules and Solids, vol. 1 (McGraw-Hill, New York, 1963)

    MATH  Google Scholar 

  2. B.H. Bransden, C.J. Joachain, Physics of Atoms and Molecules, 2nd edn. (Pearson Education, Harlow, 2003)

    Google Scholar 

  3. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (Dover, Mineola, 1996)

    Google Scholar 

  4. B.N. Finkelstein, G.E. Horowitz, Z. Phys. 48, 118 (1928)

    Article  ADS  Google Scholar 

  5. H. Wind, J. Chem. Phys. 42, 2371 (1965)

    Article  ADS  Google Scholar 

  6. P.M. Morse, Phys. Rev. 34, 57 (1929)

    Article  ADS  Google Scholar 

  7. D. ter Haar, Phys. Rev. 70, 222 (1946)

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Herzberg, Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules, 2nd edn. (Krieger, Malabar, 1989)

    Google Scholar 

  9. H. Wind, J. Chem. Phys. 43, 2956 (1965)

    Article  ADS  Google Scholar 

  10. A. Giusti-Suzor, F.H. Mies, L.F. DiMauro, E. Charron, B. Yang, J. Phys. B At. Mol. Opt. Phys. 28, 309 (1995)

    Article  ADS  Google Scholar 

  11. S. Chelkowski, T. Zuo, A.D. Bandrauk, Phys. Rev. A 46, R5342 (1992)

    Article  ADS  Google Scholar 

  12. S. Chelkowski, T. Zuo, O. Atabek, A.D. Bandrauk, Phys. Rev. A 52, 2977 (1995)

    Article  ADS  Google Scholar 

  13. M. Uhlmann, T. Kunert, R. Schmidt, Phys. Rev. A 72, 045402 (2005)

    Article  ADS  Google Scholar 

  14. J.D. Jackson, Klassische Elektrodynamik, 2nd edn. (Walter de Gruyter, Berlin, 1983)

    Google Scholar 

  15. T. Zuo, A.D. Bandrauk, Phys. Rev. A 52, R2511 (1995)

    Article  ADS  Google Scholar 

  16. V. Roudnev, B.D. Esry, I. Ben-Itzhak, Phys. Rev. Lett. 93, 163601 (2004)

    Article  ADS  Google Scholar 

  17. A.D. Bandrauk, in Molecules in Laser Fields, ed. by A.D. Bandrauk (Dekker, New York, 1994), chap. 1, pp. 1–69

    Google Scholar 

  18. A.D. Bandrauk, E.E. Aubanel, J.M. Gauthier, Molecules in Laser Fields, ed. by A.D. Bandrauk (Dekker, New York, 1994), chap. 3, pp. 109–179

    Google Scholar 

  19. B. Feuerstein, U. Thumm, Phys. Rev. A 67, 043405 (2003)

    Article  ADS  Google Scholar 

  20. A. Kästner, F. Grossmann, S. Krause, R. Schmidt, A. Kenfack, J.M. Rost, New J. Phys. 11, 083014 (2009)

    Article  ADS  Google Scholar 

  21. A. Palacios, H. Bachau, F. Martin, Phys. Rev. Lett. 96, 143001 (2006)

    Article  ADS  Google Scholar 

  22. H. Haken, H.C. Wolf, Molekülphysik und Quantenchemie (Springer, Heidelberg, 1992)

    Book  Google Scholar 

  23. R. Schinke, Photodissociation Dynamics (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  24. D.J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, Sausalito, 2007)

    Google Scholar 

  25. S.T. Epstein, J. Chem. Phys. 44, 836 (1966)

    Article  ADS  Google Scholar 

  26. R. Requist, E.K.U. Gross, Phys. Rev. Lett. 117, 193001 (2016)

    Article  ADS  Google Scholar 

  27. R.B. Walker, R.K. Preston, J. Chem. Phys. 67, 2017 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Mecke, Z. Elektrochemie 54, 38 (1950)

    Google Scholar 

  29. M.J. Davis, R.E. Wyatt, Chem. Phys. Lett. 86, 235 (1982)

    Article  ADS  Google Scholar 

  30. S. Chelkowski, A.D. Bandrauk, P.B. Corkum, Phys. Rev. Lett. 65, 2355 (1990)

    Article  ADS  Google Scholar 

  31. W. Jakubetz, J. Manz, V. Mohan, J. Chem. Phys 90, 3683 (1989)

    Article  ADS  Google Scholar 

  32. S. Krempl, T. Eisenhammer, A. Hübler, G. Mayer-Kress, P.W. Milonni, Phys. Rev. Lett. 69, 430 (1992)

    Article  ADS  Google Scholar 

  33. S. Shi, H. Rabitz, J. Chem. Phys. 92, 364 (1990)

    Article  ADS  Google Scholar 

  34. B.M. Garraway, K.A. Suominen, Rep. Prog. Phys. 58, 365 (1995)

    Article  ADS  Google Scholar 

  35. J.C. Tully, J. Chem. Phys. 93, 1061 (1990)

    Article  ADS  Google Scholar 

  36. H.D. Meyer, W.H. Miller, J. Chem. Phys. 72, 2272 (1980)

    Article  ADS  Google Scholar 

  37. G. Stock, M. Thoss, Phys. Rev. Lett. 78, 578 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, Reading, 1994)

    Google Scholar 

  39. K.A. Suominen, B.M. Garraway, S. Stenholm, Phys. Rev. A 45, 3060 (1992)

    Article  ADS  Google Scholar 

  40. J. Franck, Trans. Faraday Soc. 21, 536 (1926)

    Article  Google Scholar 

  41. E.U. Condon, Phys. Rev. 28, 1182 (1926)

    Article  ADS  Google Scholar 

  42. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals Series and Products, 5th edn. (Academic Press, New York, 1994)

    MATH  Google Scholar 

  43. F. Grossmann, Phys. Rev. A 60, 1791 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Hamm, M. Zanni, Concepts and Methods of 2D IR Spectroscopy (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  45. A. Assion, M. Geisler, J. Helbing, V. Seyfried, T. Baumert, Phys. Rev. A 54, R4605 (1996)

    Article  ADS  Google Scholar 

  46. C. Meier, Theoretische Untersuchungen zur Photoelektronenspektroskopie kleiner Moleküle mit kurzen und intensiven Laserpulsen. Ph.D. thesis, Universität Freiburg (1995)

    Google Scholar 

  47. V. Engel, Comp. Phys. Comm. 63, 228 (1991)

    Article  ADS  Google Scholar 

  48. V. Engel, H. Metiu, J. Chem. Phys. 100, 5448 (1994)

    Article  ADS  Google Scholar 

  49. S.O. Williams, D.G. Imre, J. Phys. Chem. 92, 6648 (1988)

    Article  Google Scholar 

  50. M. Dantus, M.J. Rosker, A.H. Zewail, J. Chem. Phys. 87, 2395 (1987)

    Article  ADS  Google Scholar 

  51. F. Hund, Z. Phys. 43, 805 (1927)

    Article  ADS  Google Scholar 

  52. F. Grossmann, T. Dittrich, P. Jung, P. Hänggi, Phys. Rev. Lett. 67, 516 (1991)

    Article  ADS  Google Scholar 

  53. F. Grossmann, Der Tunneleffekt in periodisch getriebenen Quantensystemen. Ph.D. thesis, Universität Augsburg (1992)

    Google Scholar 

  54. F. Grossmann, P. Hänggi, Europhys. Lett. 18, 1 (1992)

    Article  ADS  Google Scholar 

  55. J.H. Shirley, Phys. Rev. 138, B979 (1965)

    Article  ADS  Google Scholar 

  56. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1965)

    MATH  Google Scholar 

  57. Y. Kayanuma, Phys. Rev. A 50, 843 (1994)

    Article  ADS  Google Scholar 

  58. G.D. Valle, M. Ornigotti, E. Cianci, V. Foglietti, P. Laporta, S. Longhi, Phys. Rev. Lett. 98, 263601 (2007)

    Article  ADS  Google Scholar 

  59. E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, M.K. Oberthaler, Phys. Rev. Lett. 100, 190405 (2008)

    Article  ADS  Google Scholar 

  60. M.F. Kling, C. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Science 312, 246 (2006)

    Article  ADS  Google Scholar 

  61. K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  62. D.J. Tannor, S.A. Rice, Adv. Chem. Phys. 70, 441 (1988)

    Google Scholar 

  63. R. Kosloff, S.A. Rice, P. Gaspard, S. Tersigni, D.J. Tannor, Chem. Phys. 139, 201 (1989)

    Article  ADS  Google Scholar 

  64. D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986)

    Article  ADS  Google Scholar 

  65. V.F. Krotov, I.N. Feldman, Engrg. Cybernetics 21, 123 (1984)

    Google Scholar 

  66. S.A. Rice, M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000)

    Google Scholar 

  67. F. Grossmann, L. Feng, G. Schmidt, T. Kunert, R. Schmidt, Europhys. Lett. 60, 201 (2002)

    Article  ADS  Google Scholar 

  68. D. Zeidler, S. Frey, K.L. Kompa, M. Motzkus, Phys. Rev. A 64, 023420 (2001)

    Article  ADS  Google Scholar 

  69. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    Article  ADS  Google Scholar 

  70. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919 (1998)

    Article  ADS  Google Scholar 

  71. D. Babikov, J. Chem. Phys. 121, 7577 (2004)

    Article  ADS  Google Scholar 

  72. T. Cheng, A. Brown, J. Chem. Phys. 124, 034111 (2006)

    Article  ADS  Google Scholar 

  73. C. Gollub, R. de Vivie-Riedle, J. Chem. Phys. 126, 204102 (2008)

    Google Scholar 

  74. P. Passarinho, M.L. da Silva, J. Mol. Spec. 236, 148 (2006)

    Article  ADS  Google Scholar 

  75. J.H. Posthumus, Rep. Prog. Phys. 67, 623 (2004)

    Article  ADS  Google Scholar 

  76. A.D. Bandrauk (ed.), Molecules in Laser Fields (Dekker, New York, 1994)

    Google Scholar 

  77. J.M. Feagin, Quantum Methods with Mathematica (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  78. M. Born, R. Oppenheimer, Ann. Phys. (Leipzig) 84, 457 (1927)

    Article  ADS  Google Scholar 

  79. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)

    MATH  Google Scholar 

  80. W. Kutzelnigg, Mol. Phys. 90, 909 (1997)

    Article  ADS  Google Scholar 

  81. S.L. Mielke, D.W. Schwenke, G.C. Schatz, B.C. Garrett, K.A. Peterson, J. Phys. Chem. 113, 4479 (2009)

    Article  Google Scholar 

  82. B.T. Sutcliffe, R.G. Woolley, J. Chem. Phys. 137, 22A544 (2012)

    Article  Google Scholar 

  83. B.T. Sutcliffe, R.G. Woolley, J. Chem. Phys. 140, 037101 (2014)

    Article  ADS  Google Scholar 

  84. T. Jecko, J. Math. Phys. 55, 053504 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  85. N.C. Handy, A.M. Lee, Chem. Phys. Lett. 252, 909 (1996)

    Article  Google Scholar 

  86. G. Panati, H. Spohn, S. Teufel, ESAIM: Mathematical Modelling and Numerical Analysis 41, 297 (2007)

    Google Scholar 

  87. B.K. Kendrick, C. Alden Mead, D.G. Truhlar, Chem. Phys. Lett 330, 629 (2000)

    Article  ADS  Google Scholar 

  88. M. Persico, G. Granucci, Theor. Chem. Acc. 133, 1526 (2014)

    Article  Google Scholar 

  89. U. Saalmann, R. Schmidt, Z. Phys. D 38, 153 (1996)

    Google Scholar 

  90. T. Kunert, R. Schmidt, Eur. Phys. J. D 25, 15 (2003)

    Article  ADS  Google Scholar 

  91. M. Thoss, H. Wang, Ann. Rev. Phys. Chem. 55, 299 (2004)

    Article  ADS  Google Scholar 

  92. J.M. Feagin, J.S. Briggs, Phys. Rev. Lett. 57, 984 (1986)

    Article  ADS  Google Scholar 

  93. G. Hunter, Int. J. Quantum Chem. 9, 237 (1975)

    Article  Google Scholar 

  94. A. Abedi, N. Maitra, E.K.U. Gross, Phys. Rev. Lett. 105, 123002 (2010)

    Article  ADS  Google Scholar 

  95. L. Cederbaum, J. Chem. Phys. 138, 224110 (2013)

    Article  ADS  Google Scholar 

  96. Y. Tanimura, J. Phys. Soc. Jpn. 75, 082001 (2006)

    Article  ADS  Google Scholar 

  97. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995)

    Google Scholar 

  98. M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  99. P. Brumer, M. Shapiro, Principles of the Quantum Control of Molecular Processes (Wiley-VCH, Berlin, 2003)

    MATH  Google Scholar 

  100. J. Manz, L.Wöste (eds.), Femtosecond Chemistry, vol. 1 and 2 (VCH, Weinheim, 1995)

    Google Scholar 

  101. R. de Nalda, L. Banares (eds.), Ultrafast Phenomena in Molecular Sciences: Femtosecond Physics and Chemistry, Springer Series in Chemical Physics, vol. 107 (Springer International Publishing, 2014)

    Google Scholar 

  102. T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)

    Article  ADS  Google Scholar 

  103. S. Haessler, J. Caillat, P. Salières, J. Phys. B At. Mol. Opt. Phys. 44, 203001 (2011)

    Article  ADS  Google Scholar 

  104. J.R. Hiskes, Phys. Rev. 122, 1207 (1961)

    Article  ADS  Google Scholar 

  105. U. Weiss, W. Häffner, Phys. Rev. D 27, 2916 (1983)

    Article  ADS  Google Scholar 

  106. D.W. Hone, R. Ketzmerick, W. Kohn, Phys. Rev. A 56, 4045 (1997)

    Article  ADS  Google Scholar 

  107. D. Kohen, D.J. Tannor, J. Chem. Phys. 98, 3168 (1993)

    Article  ADS  Google Scholar 

  108. A. Emmanouilidou, X.G. Zhao, P. Ao, Q. Niu, Phys. Rev. Lett. 85, 1626 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Grossmann .

Appendices

5.A Relative and Center of Mass Coordinates for H\(_2^+\)

In order to derive the Hamiltonian for H\(_2^+\) in a laser field, we follow Hiskes’s general treatment of diatomic molecules [104]. Specializing to the single electron case, the Hamiltonian in length gauge and atomic units is first expressed by using the coordinates of the nuclei \(\varvec{R}_{a}\), \(\varvec{R}_{b}\) and of the electron, \(\varvec{r}_\mathrm{e}\), according to

$$\begin{aligned} \hat{H}_{\mathrm{mol}}=-\frac{1}{2}\left\{ \Delta _{a}/M_\mathrm{p} +\Delta _{b}/M_\mathrm{p}+\Delta _\mathrm{e}\right\} +V_1 -\mathcal{E}(t)[Z_{a}+Z_{b}-z_\mathrm{e}], \end{aligned}$$
(5.183)

with the proton mass \(M_\mathrm{p}\), where \(V_1=V_\mathrm{CC}+1/R\), with \(V_\mathrm{CC}\) from (5.25), contains all Coulomb interaction terms and the laser is polarized in z-direction.

Now center of mass and relative coordinates

$$\begin{aligned} \varvec{R}_\mathrm{S}= & {} \frac{M_\mathrm{p}\varvec{R}_{a} +M_\mathrm{p}\varvec{R}_{b}+\varvec{r}_\mathrm{e}}{M_\mathrm{S}}, \end{aligned}$$
(5.184)
$$\begin{aligned} \varvec{R}= & {} \varvec{R}_{a}-\varvec{R}_{b}, \end{aligned}$$
(5.185)
$$\begin{aligned} \varvec{r}_i= & {} \varvec{r}_\mathrm{e}-\frac{\varvec{R}_{a}+\varvec{R}_{b}}{2} \end{aligned}$$
(5.186)

are introduced. \(M_\mathrm{S}=2M_\mathrm{p}+1\) is the total mass of the system (in a.u.) and the coordinate of the electron is measured relative to the center of mass of the nuclei.

In matrix form the old and the new coordinates are related by

$$\begin{aligned} \left( \begin{array}{c} \varvec{R}_\mathrm{S} \\ \varvec{R} \\ \varvec{r}_i \end{array} \right) = \left( \begin{array}{ccc} \frac{M_\mathrm{p}}{M_\mathrm{S}}&{}\frac{M_\mathrm{p}}{M_\mathrm{S}}&{}\frac{1}{M_\mathrm{S}} \\ 1&{}-1&{}0 \\ -1/2&{}-1/2&{}1 \end{array} \right) \left( \begin{array}{c} \varvec{R}_{a} \\ \varvec{R}_{b} \\ \varvec{r}_\mathrm{e} \end{array} \right) . \end{aligned}$$
(5.187)

With the help of the inverse matrix, the back transformation can be derived, which amounts to

$$\begin{aligned} \left( \begin{array}{c} \varvec{R}_{a} \\ \varvec{R}_{b} \\ \varvec{r}_\mathrm{e} \end{array} \right) = \left( \begin{array}{ccc} 1&{}1/2&{}-\frac{1}{M_\mathrm{S}} \\ 1&{}-1/2&{}-\frac{1}{M_\mathrm{S}} \\ 1&{}0&{}\frac{2M_\mathrm{p}}{M_\mathrm{S}} \end{array} \right) \left( \begin{array}{c} \varvec{R}_\mathrm{S} \\ \varvec{R} \\ \varvec{r}_i \end{array} \right) . \end{aligned}$$
(5.188)

Finally, not only the old coordinates, but also their time derivatives in the classical form of the Hamiltonian are expressed in terms of the new coordinates. It turns out that the center of mass with charge e moves “freely” in the electrical field [104]. The relative motion, however, is governed by the Hamiltonian

$$\begin{aligned} \hat{H}_\mathrm{{rel}}=-\frac{1}{2}\left\{ \Delta _R/M_\mathrm{r}+\Delta _i/m_i\right\} +V_1+\mathcal{E}(t)\left[ 1+1/M_\mathrm{S}\right] z_i, \end{aligned}$$
(5.189)

where the reduced masses \(M_\mathrm{r}=M_\mathrm{p}/2\) and \(m_i=\frac{2M_\mathrm{p}}{M_\mathrm{S}}\) have been introduced and the Coulomb interaction is expressed in terms of the relative coordinates.

In the case of H\(_2^+\), no kinetic couplings between the different degrees of freedom are present, nor does the field couple directly to the relative coordinate of the nuclei, which is not true in the general case [104].

5.B Perturbation Theory for Two Coupled Surfaces

In the case of a laser driven two level system with a \(2\,\times \,2\) (matrix-) Hamilton operator

$$\begin{aligned} \hat{\mathbf{H}}=\hat{\mathbf{H}}_0+\hat{\mathbf{W}}(t), \end{aligned}$$
(5.190)

perturbation theory is best performed in the interaction picture of Sect. 2.2.4. In first order and after back transformation to the Schrödinger picture, analogous to (2.104),

$$\begin{aligned} |\varvec{\chi }(t)\rangle =\mathrm{e}^{-\mathrm{i}\hat{\mathbf{H}}_0t}|\varvec{\chi }(0)\rangle +\frac{1}{\mathrm{i}}\int _0^t\mathrm{d}t'\mathrm{e}^{-\mathrm{i}\hat{\mathbf{H}}_0(t-t')} \hat{\mathbf{W}}(t')\mathrm{e}^{-\mathrm{i}\hat{\mathbf{H}}_0t'}|\varvec{\chi }(0)\rangle \end{aligned}$$
(5.191)

can be written for the vector valued wavefunction in atomic units.

Invoking the Born-Oppenheimer approximation , we assume that the unperturbed Hamiltonian \(\hat{\mathbf{H}}_0\) has only diagonal elements \(\hat{H}_\mathrm{g},\hat{H}_\mathrm{e}\). Furthermore, the initial wavefunction shall be restricted to the electronic ground state

$$\begin{aligned} |\varvec{\chi }(0)\rangle =\left( \begin{array}{c} |\chi _\mathrm{g}(0)\rangle \\ 0 \end{array} \right) \;. \end{aligned}$$
(5.192)

Under the influence of the perturbation (having only off diagonal elements), the component of the wavefunction

$$\begin{aligned} |\varvec{\chi }(t)\rangle =\left( \begin{array}{c} |\chi _\mathrm{g}(t)\rangle \\ |\chi _\mathrm{e}(t)\rangle \end{array} \right) \end{aligned}$$
(5.193)

in the excited electronic state as a function of time is the desired quantity. Under the assumptions mentioned above, for this quantity the golden rule expression in position representation

$$\begin{aligned} \chi _\mathrm{e}(\varvec{R},t)=\frac{1}{\mathrm{i}}\int _0^t\mathrm{d}t'\mathrm{e}^{-\mathrm{i}\hat{H}_\mathrm{e}(t-t')} \hat{W}_{\mathrm{e.g.}}(\varvec{R},t')\mathrm{e}^{-\mathrm{i}\hat{H}_\mathrm{g}t'}\chi _\mathrm{g}(\varvec{R},0) \end{aligned}$$
(5.194)

is found. Here the definitions

$$\begin{aligned} \hat{W}_{\mathrm{e.g.}}(\varvec{R},t)= \langle \mathrm{e}(\varvec{R}) |\hat{W}(t)| \mathrm{g}(\varvec{R})\rangle \qquad \hat{H}_{j}= \langle j(\varvec{R}) |\hat{H}_0| j(\varvec{R})\rangle \end{aligned}$$
(5.195)

of the matrix elements of the (electronic plus nuclear) HamiltonianFootnote 16 have been introduced, and j can either be e(xited) or g(round).

The physical interpretation of this final result is straightforward. The wavefunction propagates for a time \(t'\) on the lower surface is then multiplied by the perturbation and propagates on the upper surface until the final time t. All the possibilities to split the time interval [0, t] have to be integrated over.

5.C Reflection Principle of Photodissociation

The dynamical reflection principle plays a major role for the interpretation of the photoelectron spectrum in a pump-probe experiment. It has an analog in the field of photodissociation. In [23] it is shown that the absorption spectrum of photodissociation is given by the Fourier transform of the auto-correlation function of the ground state wavepacket,

$$\begin{aligned} \chi _\mathrm{g}(R)=\left( \frac{2\alpha _R}{\pi }\right) ^{1/4}\mathrm{e}^{-\alpha _R(R-R_\mathrm{e})^2}\;, \end{aligned}$$
(5.196)

approximated by a Gaussian centered around \(R_\mathrm{e}\) and with inverse width parameter \(\alpha _R\), that is instantaneously lifted to the excited state, where it is evolving in time.

In order to perform analytic calculations, this antibinding surface is approximated by a straight line

$$\begin{aligned} V(R)\approx V_\mathrm{e}-V_R(R-R_\mathrm{e}). \end{aligned}$$
(5.197)

Using the short-time approximation (i.e., neglecting the kinetic energy) the wavefunction on the antibinding surface is given by

$$\begin{aligned} \chi _\mathrm{e}(R,t)\sim \mathrm{e}^{-\mathrm{i}[V_\mathrm{e}-V_R(R-R_\mathrm{e})]t} \mathrm{e}^{-\alpha _R(R-R_\mathrm{e})^2}\;. \end{aligned}$$
(5.198)

The Fourier transformation of the auto-correlation \(c(t)=\langle \chi _\mathrm{e}(0)|\chi _\mathrm{e}(t)\rangle \) can be done analytically, yielding the absorption spectrum

$$\begin{aligned} \sigma (E)\sim \frac{\mathrm{e}^{-2\beta (E-V_\mathrm{e})^2}}{V_R} \end{aligned}$$
(5.199)

with \(\beta =(V_R^2/\alpha _R)^{-1}\). The same result can also be obtained by a purely classical calculation [23]. The maximum of the spectrum is at \(E=V_\mathrm{e}\) and its FWHM \(\Delta E= V_R\Delta R\) is proportional to the negative slope of the antibinding surface and the FWHM of the squared initial wavepacket. In Fig. 5.50 it is shown that the reflection of the squared initial wavepacket at the antibinding surface yields the spectrum.

Fig. 5.50
figure 50

Reflection principle of photodissociation [23]. \(\Delta E\) is the FWHM of the absorption spectrum, whereas \(\Delta R\) is the FWHM of the absolute square of the initial wavepacket

5.D The Undriven Double-Well Problem

Figure 5.51 shows the unperturbed double-well potential,

$$\begin{aligned} V_\mathrm{DW}(x)\equiv -\frac{1}{4}x^{2}+\frac{1}{64 D}x^{4}, \end{aligned}$$
(5.200)

in the units introduced in Sect. 5.5.1 for \(D=2\), including the five energy eigenvalues which lay below the barrier.

The coherent tunneling of a particle in the double-well potential emerges by considering an initial state that is a superposition of the two lowest (real-valued) eigenfunctions, \(\chi _{1}(x), \chi _{2}(x)\), depicted in Fig. 5.52, with the energies \(E_{1},E_{2}\).Footnote 17 At time \(t=0\) this leads to a state that is localized in the left well

$$\begin{aligned} \chi _{l}(x,0)=\frac{1}{\sqrt{2}} \left[ \chi _{1}(x)-\chi _{2}(x)\right] . \end{aligned}$$
(5.201)

In the case \(D\rightarrow \infty \) it is identical to the ground state of the harmonic approximation to the left well. Its absolute value has the time evolution

$$\begin{aligned} |\chi _{l}(x,t)|^{2}=\frac{1}{2} \left\{ |\chi _{1}(x)|^{2}+|\chi _{2}(x)|^{2} -2\chi _{1}(x)\chi _{2}(x) \cos [(E_{2}-E_{1})t] \right\} . \end{aligned}$$
(5.202)

Defining the tunneling splitting as

$$\begin{aligned} \varDelta =E_{2}-E_{1}, \end{aligned}$$
(5.203)

the corresponding tunneling time

$$\begin{aligned} T_\mathrm{tu}=\frac{2\pi }{\varDelta } \end{aligned}$$
(5.204)

follows. The eigenvalues of the time-independent Schrödinger equation with a quartic potential and thus also the tunneling splitting are not available exactly analytically. Using a semiclassical approximation, \(\varDelta \) can be determined, however. The result of such a calculation is [105]

$$\begin{aligned} \varDelta _\mathrm{s}=8\sqrt{\frac{2D}{\pi }}\exp \left( -\frac{16D}{3}\right) , \end{aligned}$$
(5.205)

depending exponentially on the dimensionsless barrier height. In Table 5.4 some values of \(\varDelta \) for different barrier heights can be found.

Table 5.4 Numerical and semiclassical (index s) results for the tunneling splitting as a function of the barrier height [53]
Fig. 5.51
figure 51

Symmetric double-well potential with five energy eigenvalues for \(D=2\)

Fig. 5.52
figure 52

Eigenfunctions of the lowest two eigenvalues for \(D=2\). Solid line: \(\chi _{1}(x)\), dashed line: \(\chi _{2}(x)\)

5.E The Quantum Mechanical Adiabatic Theorem

To derive the adiabatic theorem in quantum theory, let us consider a system with discrete levels, whose state vector is given by

$$\begin{aligned} |\varvec{\varPsi }(t)\rangle =\left( \begin{array}{c} |\psi _1(t)\rangle \\ |\psi _2(t)\rangle \\ \vdots \end{array}\right) \;. \end{aligned}$$
(5.206)

In case of a time-dependent perturbation, the Hamilton matrix is given by

$$\begin{aligned} \mathbf{H}(t)=\left( \begin{array}{ccc} E_1&{}V_{12}(t)&{}\cdots \\ V_{21}(t)&{}E_2&{}\cdots \\ \vdots &{}\vdots &{}\ddots \end{array} \right) \;. \end{aligned}$$
(5.207)

Clearly, an eigenstate stays an eigenstate without the external perturbation. Even in the presence of a slowly changing perturbation an analogous statement holds, however.

To show this, one first defines a unitary transformation , diagonalizing the instantaneous Hamiltonian

$$\begin{aligned} \mathbf{U}^{-1}(t)\mathbf{H}(t)\mathbf{U}(t)=\mathbf{D}(t)\;. \end{aligned}$$
(5.208)

The transformed state vector is given by

$$\begin{aligned} |\varvec{\varPsi }'(t)\rangle =\mathbf{U}^{-1}|\varvec{\varPsi }(t)\rangle \;. \end{aligned}$$
(5.209)

It fulfills the time-dependent Schrödinger equation

$$\begin{aligned} \mathrm{i}|\dot{\varvec{\varPsi }}'(t)\rangle =\mathbf{D}|\varvec{\varPsi }'(t)\rangle -\mathrm{i}\mathbf{U}^{-1}\dot{\mathbf{U}}|\varvec{\varPsi }'(t)\rangle \;. \end{aligned}$$
(5.210)

If the Hamilton matrix \(\mathbf{H}\) is slowly time-dependent, then also \(\mathbf{U}\) depends only weakly on time and the second term on the right hand side of the equation above can be neglected. An eigenfunction of the original Hamiltonian thus stays an eigenfunction of the instantaneous Hamiltonian. In [106] it has been shown that for periodically driven systems the adiabatic theorem has to be modified.

Finally, it is worthwhile to mention that by choosing the perturbation in such a way that the Hamiltonian switches from a simple to a complex one, the eigenstates of the complex Hamiltonian can be gained numerically [107]. In addition, an application to two-level systems has been given in [108].

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grossmann, F. (2018). Molecules in Strong Laser Fields. In: Theoretical Femtosecond Physics. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-74542-8_5

Download citation

Publish with us

Policies and ethics

Navigation