Nonlinear Schrödinger and Gross - Pitaevskii Equations in the Bohmian or Quantum Fluid Dynamics (QFD) Representation

  • Chapter
  • First Online:
Generalized Models and Non-classical Approaches in Complex Materials 1

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

  • 1598 Accesses

Abstract

The Quantum Fluid Dynamics (QFD) representation has its foundations in the works of Madelung (1929), De Broglie (1930 - 1950) and Bohm (1950 - 1970). It is an interpretation of quantum mechanics with the goal to find classically identifiable dynamical variables at the sub-particle level. The approach leads to two conservation laws, one for "mass" and one for "momentum", similar to those in hydrodynamics for a compressible fluid with a particular constitutive law. The QFD equations are a set of nonlinear partial differential equations. This paper extends the QFD formalism of quantum mechanics to the Nonlinear Schrödinger and the Gross-Pitaevskii equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 176.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Askar A, Cakmak AS, Rabitz H (1980) Nodal structure and global behavior of scattering wave functions. J Chem Phys 72:5287

    Google Scholar 

  • Bohm D (1951) Quantum Theory. Prentice-Hall, Inc., New York

    Google Scholar 

  • Bohm D, Bub J (1966) A proposed solution of the measurement problem in quantum mechanics by a hidden variable theory. Rev Mod Phys 38:453

    Google Scholar 

  • Bohr N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 48:696

    Google Scholar 

  • Braun D (2001) Dissipative Quantum Chaos and Decoherence, Springer Tracts in Modern Physics, vol 172. Springer, Berlin, Heidelberg

    Google Scholar 

  • de Broglie L (1926) Sur la possibilité de relier les phénomènes d’interférences et de diffraction à la théorie des quanta de lumière. Compt Rend Acad Sci Paris 183:447

    Google Scholar 

  • de Broglie L (1951) Remarques sur la théorie de l’onde pilote. Compt Rend Acad Sci Paris 233:641

    Google Scholar 

  • de Broglie L (1957) Idées nouvelles concernant les systèmes de corpuscules dans l’interprétation causale de la mécanique ondulatoire. Compt Rend Acad Sci Paris 244:529

    Google Scholar 

  • de Broglie L (1967) Le mouvement brownien d’une particule dans son onde. Compt Rend Acad Sci Paris 264:1041

    Google Scholar 

  • Dey B (1998) Multidimensional wave-packet dynamics within the fluid dynamical formulation of the schrödinger equation. J Chem Phys 109:8770

    Google Scholar 

  • Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777

    Google Scholar 

  • Eringen AC (1962) Nonlinear Theory of Continuous Media. McGraw-Hill

    Google Scholar 

  • Landau LD, Lifschitz EM (1959) Fluid Mechanics. Pergamon Press

    Google Scholar 

  • Madelung E (1926) Quantentheorie in hydrodynamischer Form. Z Physik 40:322–326

    Google Scholar 

  • Sales F (1999) Quantum fluid dynamics in the lagrangian representation and applications to photodissociation problems. J Chem Phys 111:2423

    Google Scholar 

  • Schilp PA (ed) (1949) Albert Einstein, Philosopher-Scientist. Library of Living Philosophers, Evanston, Illinois

    Google Scholar 

  • Styer DF, Balkin MS, Becker KM, Burns MR, Dudley CE, Forth ST, Gaumer JS, Kramer MA, Oertel DC, Park LH, Rinkoski MT, Smith CT, Wotherspoon TD (2002) Nine formulations of quantum mechanics. American Journal of Physics 70(3):288–297

    Google Scholar 

  • Weiner JH, Askar A (1971) Time-dependent perturbation calculations based on the hydrodynamic analogy to quantum mechanics. J Chem Phys 54:1108

    Google Scholar 

  • Wyatt RE (2005) Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics, Interdisciplinary Applied Mathematics, vol 28. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attila Askar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Askar, A. (2018). Nonlinear Schrödinger and Gross - Pitaevskii Equations in the Bohmian or Quantum Fluid Dynamics (QFD) Representation. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation