Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

Abstract

We discuss the particular class of strain-gradient elastic material models which we called the reduced or degenerated strain-gradient elasticity. For this class the strain energy density depends on functions which have different differential properties in different spatial directions. As an example of such media we consider the continual models of pantographic beam lattices and smectic and columnar liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ablowitz MA, Clarkson PA (1991) Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society lecture note series, vol 149. Cambridge University Press, Cambridge

    Google Scholar 

  • Ablowitz MJ, Segur H (1981) Solitons and the inverse scattering transform. SIAM, Philadelphia

    Google Scholar 

  • Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Engng Sci 30(10):1279–1299

    Google Scholar 

  • Aifantis EC (2003) Update on a class of gradient theories. Mech Materials 35(3):259–280

    Google Scholar 

  • Aifantis EC (2014) Gradient material mechanics: perspectives and prospects. Acta Mech 225(4-5):999–1012

    Google Scholar 

  • Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990

    Google Scholar 

  • Askes H, Gitman I (2017) Reducible and irreducible forms of stabilised gradient elasticity in dynamics. Math Mech Complex Systems 5(1):1–17

    Google Scholar 

  • Bertram A (2016) Compendium on Gradient Materials . OvGU, Magdeburg

    Google Scholar 

  • Bertram A, Glüge R (2016) Gradient materials with internal constraints. Math Mech Complex Systems 4(1):1–15

    Google Scholar 

  • Boutin C, dell’Isola F, Giorgio I, Placidi L (2017) Linear pantographic sheets: Asymptotic micromacro models identification. Math Mech Complex Systems 5(2):127–162

    Google Scholar 

  • Chandrasekhar S (1977) Liquid Crystals. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Chatzigeorgiou G, Meraghni F, Javili A (2017) Generalized interfacial energy and size effects in composites. J Mech Phys Solids 106:257–282

    Google Scholar 

  • Cordero NM, Forest S, Busso EP (2016) Second strain gradient elasticity of nano-objects. J Mech Phys Solids 97:92–124

    Google Scholar 

  • d’Agostino MV, Giorgio I, Greco L, Madeo A, Boisse P (2015) Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements. Int J Solids Struct 59:1–17

    Google Scholar 

  • dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. J Elast 118(1):113–125

    Google Scholar 

  • dell’Isola F, Giorgio I, Pawlikowski M, Rizzi N (2016a) Large deformations of planar extensible beams and pantographic lattices: Heuristic homogenisation, experimental and numerical examples of equilibrium. Proc Roy Soc London A 472(2185):20150,790

    Google Scholar 

  • dell’Isola F, Steigmann D, della Corte A (2016b) Synthesis of fibrous complex structures: Designing microstructure to deliver targeted macroscale response. Appl Mech Rev 67(6):060,804–060,804–21

    Google Scholar 

  • dell’Isola F, Della Corte A, Giorgio I (2017) Higher-gradient continua: The legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 22(4):852–872

    Google Scholar 

  • Eastham JF, Peterson JS (2004) The finite element method in anisotropic Sobolev spaces. Computers & Mathematics with Applications 47(10):1775–1786

    Google Scholar 

  • Engelbrecht J, Berezovski A (2015) Reflections on mathematical models of deformation waves in elastic microstructured solids. Math Mech Complex Systems 3(1):43–82

    Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2006) Local symmetry group in the general theory of elastic shells. J Elast 85(2):125–152

    Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2012) Material symmetry group of the non-linear polar-elastic continuum. Int J Solids Struct 49(14):1993–2005

    Google Scholar 

  • Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math Mech Solids 21(2):210–221

    Google Scholar 

  • Eremeyev VA, dell’Isola F, Boutin C, Steigmann D (2017) Linear pantographic sheets: existence and uniqueness of weak solutions. J Elast https://doi.org/10.1007/s10659-017-9660-3

  • Forest S, Cordero N, Busso EP (2011) First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput Materials Sci 50(4):1299–1304

    Google Scholar 

  • de Gennes G P, Prost J (1993) The Physics of Liquid Crystals, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Giorgio I, Rizzi N, Turco E (2017) Continuum modelling of pantographic sheets for outof- plane bifurcation and vibrational analysis. Proc Roy Soc A 473(2207):21 pages https://doi.org/10.1098/rspa.2017.0636

  • Grimmett G (2016) Correlation inequalities for the Potts model. Math Mech Complex Systems 4(3):327–334

    Google Scholar 

  • Harrison P (2016) Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Composites A 81:145–157

    Google Scholar 

  • Healey TJ, Krömer S (2009) Injective weak solutions in second-gradient nonlinear elasticity. ESAIM: Control, Optimisation and Calculus of Variations 15(4):863–871

    Google Scholar 

  • Kadomtsev BB, Petviashvili VI (1970) On the stability of solitary waves in weakly dispersing media. Sov Phys Doklady 15(6):539–541

    Google Scholar 

  • Lebedev LP, Cloud MJ, Eremeyev VA (2010) Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey

    Google Scholar 

  • Mareno A, Healey TJ (2006) Global continuation in second-gradient nonlinear elasticity. SIAM J Math Analysis 38(1):103–115

    Google Scholar 

  • de Masi A, Merola I, Presutti E, Vignaud Y (2008) Potts models in the continuum. uniqueness and exponential decay in the restricted ensembles. J Stat Phys 133(2):281–345

    Google Scholar 

  • de Masi A, Merola I, Presutti E, Vignaud Y (2009) Coexistence of ordered and disordered phases in Potts models in the continuum. J Stat Phys 134(2):243–306

    Google Scholar 

  • Maugin GA (1999) Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford

    Google Scholar 

  • Maugin GA (2010) Generalized continuum mechanics: what do we mean by that? In: Maugin GA, Metrikine AV (eds) Mechanics of Generalized Continua. One Hundred Years after the Cosserats, Springer, pp 3–13

    Google Scholar 

  • Maugin GA (2011) A historical perspective of generalized continuum mechanics. In: Altenbach H, Erofeev VI, Maugin GA (eds) Mechanics of Generalized Continua. From the Micromechanical Basics to Engineering Applications, Springer, Berlin, pp 3–19

    Google Scholar 

  • Maugin GA (2013) Generalized Continuum Mechanics: Various Paths, Springer, Dordrecht, pp 223–241

    Google Scholar 

  • Maugin GA (2016) Continuum Mechanics Through Ages. From the Renaissance to the Twentieth Century. Springer, Cham

    Google Scholar 

  • Maugin GA (2017) Non-Classical Continuum Mechanics: A Dictionary. Springer, Singapore

    Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Analysis 16(1):51–78

    Google Scholar 

  • Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109–124

    Google Scholar 

  • Misra A, Chang CS (1993) Effective elastic moduli of heterogeneous granular solids. Int J Solids Struct 30:2547–2566

    Google Scholar 

  • Oswald P, Pieranski P (2006) Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. The Liquid Crystals Book Series (eds GW Gray, JW Goodby, and A Fukuda), Taylor & Francis, Boca Raton

    Google Scholar 

  • Placidi L, Barchiesi E, Turco E, Rizzi NL (2016) A review on 2D models for the description of pantographic fabrics. ZAMP 67(5):121

    Google Scholar 

  • Placidi L, Andreaus U, Giorgio I (2017) Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J Engng Math 103(1):1–21

    Google Scholar 

  • Pouget J (2005) Non-linear lattice models: complex dynamics, pattern formation and aspects of chaos. Phil Magazine 85(33–35):4067–4094

    Google Scholar 

  • Rahali Y, Giorgio I, Ganghoffer JF, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Engng Sci 97:148–172

    Google Scholar 

  • Simmonds JG (1994) A Brief on Tensor Analysis, 2nd edn. Springer, New Yourk

    Google Scholar 

  • Soubestre J, Boutin C (2012) Non-local dynamic behavior of linear fiber reinforced materials. Mech Materials 55:16–32

    Google Scholar 

  • Timoshenko SP, Woinowsky-Krieger S (1985) Theory of Plates and Shells. McGraw Hill, New York

    Google Scholar 

  • Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Analysis 11(1):385–414

    Google Scholar 

  • Wood HG, Morton JB (1980) Onsager’s pancake approximation for the fluid dynamics of a gas centrifuge. J Fluid Mech 101(1):1–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eremeyev, V.A., dell’Isola, F. (2018). A Note on Reduced Strain Gradient Elasticity. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation