On Nonlinear Waves in Media with Complex Properties

  • Chapter
  • First Online:
Generalized Models and Non-classical Approaches in Complex Materials 1

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

Abstract

In nonlinear theories the axiom of equipresence requires all the effects of the same order to be taken account. In this paper the mathematical modelling of deformation waves in media is analysed involving nonlinear and dispersive effects together with accompanying phenomena caused by thermal or electrical fields. The modelling is based on principles of generalized continuum mechanics developed by G.A. Maugin. The analysis demonstrates the richness of models in describing the physical effects in media with complex properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ablowitz MJ (2011) Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge

    Google Scholar 

  • Andersen SSL, Jackson AD, Heimburg T (2009) Towards a thermodynamic theory of nerve pulse propagation. Progr Neurobiol 88:104–113

    Google Scholar 

  • Berezovski A (2015) Nonlinear dispersive wave equations for microstructured solids. Proc Estonian Acad Sci 64(3):203–211

    Google Scholar 

  • Berezovski A, Engelbrecht J (2013) Thermoelastic waves in microstructured solids: Dual internal variables approach. Journal of Coupled Systems and Multiscale Dynamics 1:112–119

    Google Scholar 

  • Berezovski A, Engelbrecht J, Maugin GA (2008) Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore

    Google Scholar 

  • Berezovski A, Engelbrecht J, Maugin GA (2011a) Generalized thermomechanics with dual internal variables. Archive of Applied Mechanics 81(2):229–240

    Google Scholar 

  • Berezovski A, Engelbrecht J, Maugin GA (2011b) Thermoelasticity with dual internal variables. Journal of Thermal Stresses 34(5–6):413–430

    Google Scholar 

  • Berezovski A, Engelbrecht J, Salupere A, Tamm K, Peets T, Berezovski M (2013) Dispersive waves in microstructured solids. International Journal of Solids and Structures 50(11):1981–1990

    Google Scholar 

  • Berezovski A, Engelbrecht J, Ván P (2014) Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Archive of Applied Mechanics 84(9-11):1249–1261

    Google Scholar 

  • Christov CI (2012) Hidden solitons in the Zabusky-Kruskal experiment: analysis using the periodic, inverse scattering transform. Math Comput Simul 82(6):1069–1078

    Google Scholar 

  • Christov CI, Maugin GA, Porubov AV (2007) On boussinesq’s paradigm in nonlinear wave propagation. Comptes Rendus Mécanique 335(9):521–535

    Google Scholar 

  • dell’Isola F, Pouget J, Rousseau M (2014) Gérard A. Maugin: engineering scientist: Celebrating his 70th anniversary. Math Comput Simul 84:1221–1227

    Google Scholar 

  • Engelbrecht J, Khamidullin Y (1988) On the possible amplification of nonlinear seismic waves. Phys Earth Planet Int 50:39–45

    Google Scholar 

  • Engelbrecht J, Salupere A (2005) On the problem of periodicity and hidden solitons for the KdV model. Phys Earth Planet Int 15:015,114

    Google Scholar 

  • Engelbrecht J, Berezovski A, Pastrone F, Braun M (2005) Waves in microstructured materials and dispersion. Phil Mag 85(33–35):4127–4141

    Google Scholar 

  • Engelbrecht J, Pastrone F, Braun M, Berezovski A (2007) Hierarchies of waves in nonclassical materials. In: Delsanto PP (ed) Universality of Nonclassical Nonlinearity: Applications to Non-Destructive Evaluation and Ultrasonics, Springer, New York, pp 29–47

    Google Scholar 

  • Engelbrecht J, Tamm K, Peets T (2015) On mathemathical modelling of solitary pulses in cylindrical biomembranes. Biomech Model Mechanobiol 14:159–167

    Google Scholar 

  • Engelbrecht J, Peets T, Tamm K, Laasmaa M, Vendelin M (2016) On modelling of physical effects accompanying the propagation of action potentials in nerve fibres. ar**vp1601.01867

  • Engelbrecht J, Tamm K, Peets T (2017) On solutions of a Boussinesq-type equation with displacement-dependent nonlinearities: the case of biomembranes. Phil Mag 97(12):967–987

    Google Scholar 

  • Giovine P, Oliveri F (1995) Dynamics and wave propagation in dilatant granular materials. Meccanica 30:341–357

    Google Scholar 

  • Heimburg T, Jackson AD (2005) On soliton propagation in biomembranes and nerves. Proc Natl Acad Sci USA 102:9790–9795

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  • Ilison O, Salupere A (2006) On the propagation of solitary pulses in microstructured materials. Chaos, Solitons, Fractals 29(1):202–214

    Google Scholar 

  • Ilison O, Salupere A (2009) Propagation of sech2-type solitary waves in hierarchical KdV-type systems. Math Comput Simul 79:3314–3327

    Google Scholar 

  • Janno J, Engelbrecht J (2011) Microstructured Materials: Inverse Problems. Springer, Heidelberg

    Google Scholar 

  • Maugin GA (1999) Nonlinear Waves in Elastic Crystals. Oxford Univ. Press, Oxford et al.

    Google Scholar 

  • Maugin GA (2011) Solitons in elastic solids (1938–2010). Mech Res Comm 38:341–349

    Google Scholar 

  • Maugin GA (2015) Some remarks on generalized continuum mechanics. Math Mech Solids 20(3):280–291

    Google Scholar 

  • Maugin GA, Engelbrecht J (1994) A thermodynamical viewpoint on nerve pulse dynamics. J Non-Equil Thermodyn 19:9–23

    Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Rat Mech Anal 16:51–78

    Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50:2061–2070

    Google Scholar 

  • Peets T, Kartofelev D, Tamm K, Engelbrecht J (2013) Waves in microstructured solids and negative group velocity. Proc IRE 103:16,001

    Google Scholar 

  • Porubov AV (2003) Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore

    Google Scholar 

  • Randrüüt M, Braun M (2010) On one-dimensional solitary waves in microstructured solids. Wave Motion 47:217–230

    Google Scholar 

  • Salupere A (2009) The pseudospectral method and discrete spectral analysis. In: Quak E, Soomere T (eds) Applied Wave Mathematics, Springer, Heidelberg, pp 301–33

    Google Scholar 

  • Salupere A, Engelbrecht J (2014) Scaling and hierarchies of wave motion in solids. ZAMM 94(9):775–783

    Google Scholar 

  • Salupere A, Maugin GA, Engelbrecht J (1994) KdV soliton detection from a harmonic input. Phys Lett A 192:5–8

    Google Scholar 

  • Salupere A, Maugin GA, Engelbrecht J, Kalda J (1996) On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1):49–66

    Google Scholar 

  • Salupere A, Engelbrecht J, Maugin GA (2001) Solitonic structures in KdV-based higher order systems. Wave Motion 34:51–61

    Google Scholar 

  • Salupere A, Peterson P, Engelbrecht J (2002) Long-time behaviour of soliton ensembles. Part I – emergence of ensembles. Chaos, Solitons, Fractals 14(9):1413–1424

    Google Scholar 

  • Salupere A, Peterson P, Engelbrecht J (2003) Long-time behaviour of soliton ensembles. Part I – periodical patterns of trajectories. Chaos, Solitons, Fractals 15(1):29–40

    Google Scholar 

  • Salupere A, Tamm K, Engelbrecht J (2008) Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int J Non-Lin Mech 43:201–208

    Google Scholar 

  • Salupere A, Lints M, Engelbrecht J (2014) On solitons in media modelled by the hierarchical KdV equation. Arch Appl Mech 84(9–11):1583–1593

    Google Scholar 

  • Zabusky NJ, Kruskal MD (2014) Interaction of solitons in a collisionless plasma and the recurrence of inititial states. Phys Rev Lett 15:240–243

    Google Scholar 

Download references

Acknowledgements

This research was supported by the EU through the European Regional Development Fund (project TK 124), by the Estonian Research Council (Project IUT 33-7, IUT 33-24, PUT 434) and by the French-Estonian Parrot programme. J. Engelbrecht, A. Salupere and A. Berezovski are indebted to G.A. Maugin for supporting their visits to the University of Marie and Pierre Curie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jüri Engelbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Engelbrecht, J., Salupere, A., Berezovski, A., Peets, T., Tamm, K. (2018). On Nonlinear Waves in Media with Complex Properties. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation