Acoustic Metamaterials Based on Local Resonances: Homogenization, Optimization and Applications

  • Chapter
  • First Online:
Generalized Models and Non-classical Approaches in Complex Materials 1

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 89))

Abstract

The aim of this review is to give an overview of techniques and methods used in the modeling of acoustic and elastic metamaterials. Acoustic and elastic metamaterials are man-made materials which present exotic properties capable to modify and drive wave propagation. In particular in this work we will focus on locally resonant microstructures. Such metamaterials are based on local resonances of the internal structure, the dimensions of which are much smaller than the wavelengths of the waves under analysis. We will consider the seminal papers in the fields to grasp the most important ideas used to develop locally resonant metamaterials, such as homogenization techniques and optimization topology. Finally, we will discuss some interesting application to clarify the aforementioned methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alibert J, Della Corte A (2015) Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. ZAMP 66(5):2855–2870

    Google Scholar 

  • Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73

    Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics 194(1):363–393

    Google Scholar 

  • Alù A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Physical Review E 72(1):016,623

    Google Scholar 

  • Ambati M, Fang N, Sun C, Zhang X (2007) Surface resonant states and superlensing in acoustic metamaterials. Physical Review B 75(19):195,447

    Google Scholar 

  • Andreaus U, dell’Isola F, Giorgio I, Placidi L, Lekszycki T, Rizzi N (2016) Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. International Journal of Engineering Science 108:34–50

    Google Scholar 

  • Andrianov I, Bolshakov V, Danishevs’kyy V, Weichert D (2008) Higher order asymptotic homogenization and wave propagation in periodic composite materials. Proc R Soc London A: Mathematical, Physical and Engineering Sciences 464(2093):1181–1201

    Google Scholar 

  • Ao X, Chan C (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Physical Review E 77(2):025,601

    Google Scholar 

  • Auffray N, dell’Isola F, Eremeyev V, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Mathematics and Mechanics of Solids 20(4):375–417

    Google Scholar 

  • Barchiesi E, Placidi L (2017) A review on models for the 3d statics and 2d dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, Springer, pp 239–258

    Google Scholar 

  • Battista A, Rosa L, dell’Erba R, Greco L (2016) Numerical investigation of a particle system compared with first and second gradient continua: Deformation and fracture phenomena. Mathematics and Mechanics of Solids 22:2120–2134

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71(2):197–224

    Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization by distribution of isotropic material. In: Topology Optimization, Springer, pp 1–69

    Google Scholar 

  • Berezovski A, Giorgio I, Corte AD (2016) Interfaces in micromorphic materials: wave transmission and reflection with numerical simulations. Mathematics and Mechanics of Solids 21(1):37–51

    Google Scholar 

  • Bertram A, Glüge R (2016) Gradient materials with internal constraints. Mathematics and Mechanics of Complex Systems 4(1):1–15

    Google Scholar 

  • Bevill G, Eswaran SK, Gupta A, Papadopoulos P, Keaveny TM (2006) Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39(6):1218–1225

    Google Scholar 

  • Boutin C, Giorgio I, Placidi L, et al (2017) Linear pantographic sheets: Asymptotic micro-macro models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162

    Google Scholar 

  • Brun M, Guenneau S, Movchan A (2009) Achieving control of in-plane elastic waves. Applied Physics Letters 94(6):061,903

    Google Scholar 

  • Caprino S, Esposito R, Marra R, Pulvirenti M (1993) Hydrodynamic limits of the vlasov equation. Communications in Partial Differential Equations 18(5):805–820

    Google Scholar 

  • Carinci G, De Masi A, Giardinà C, Presutti E (2014a) Hydrodynamic limit in a particle system with topological interactions. Arabian Journal of Mathematics 3(4):381–417

    Google Scholar 

  • Carinci G, De Masi A, Giardinà C, Presutti E (2014b) Super-hydrodynamic limit in interacting particle systems. Journal of Statistical Physics 155(5):867–887

    Google Scholar 

  • Chan C, Li J, Fung K (2006) On extending the concept of double negativity to acoustic waves. Journal of Zhejiang University-SCIENCE A 7(1):24–28

    Google Scholar 

  • Chang Z, Hu J, Hu G (2010) Transformation method and wave control. Acta Mechanica Sinica 26(6):889–898

    Google Scholar 

  • Chang Z, Hu J, Hu G, Tao R, Wang Y (2011) Controlling elastic waves with isotropic materials. Applied Physics Letters 98(12):121,904

    Google Scholar 

  • Chen H, Chan C (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters 91(18):183,518

    Google Scholar 

  • Chen H, Chan C (2010) Acoustic cloaking and transformation acoustics. Journal of Physics D: Applied Physics 43(11):113,001

    Google Scholar 

  • Chen J, Sharma B, Sun C (2011) Dynamic behaviour of sandwich structure containing spring-mass resonators. Composite Structures 93(8):2120–2125

    Google Scholar 

  • Craster R, Guenneau S (2012) Acoustic metamaterials: Negative refraction, imaging, lensing and cloaking, vol 166. Springer Science & Business Media

    Google Scholar 

  • Craster RV, Kaplunov J, Pichugin AV (2010) High-frequency homogenization for periodic media. Proc Royal Soc A 466:2341–2362

    Google Scholar 

  • Cummer S, Schurig D (2007) One path to acoustic cloaking. New Journal of Physics 9(3):45

    Google Scholar 

  • Cummer S, Popa B, Schurig D, Smith D, Pendry J, Rahm M, Starr A (2008) Scattering theory derivation of a 3d acoustic cloaking shell. Physical Review Letters 100(2):024,301

    Google Scholar 

  • Cuomo M, dell’Isola F, Greco L, Rizzi N (2016) First versus second gradient energies for planar sheets with two families of inextensible fibres: Investigation on deformation boundary layers, discontinuities and geometrical instabilities. Composites Part B: Engineering 115:423–448

    Google Scholar 

  • Czech B, van Kessel R, Bauer P, Ferreira JA, Wattez A (2010) Energy harvesting using dielectric elastomers. Power Electronics and Motion Control Conference (EPE/PEMC), 2010 14th International pp S4–18

    Google Scholar 

  • De Masi A, Olla S (2015) Quasi-static hydrodynamic limits. Journal of Statistical Physics 161(5):1037–1058

    Google Scholar 

  • De Masi A, Luckhaus S, Presutti E (2007) Two scales hydrodynamic limit for a model of malignant tumor cells. Annales de l’Institut Henri Poincare (B) Probability and Statistics 43(3):257–297

    Google Scholar 

  • De Masi A, Merola I, Presutti E, Vignaud Y (2009) Coexistence of ordered and disordered phases in potts models in the continuum. Journal of Statistical Physics 134(2):243–306

    Google Scholar 

  • De Masi A, Galves A, Löcherbach E, Presutti E (2015) Hydrodynamic limit for interacting neurons. Journal of Statistical Physics 158(4):866–902

    Google Scholar 

  • dell’Isola F, Giorgio I, Andreaus U (2015) Elastic pantographic 2d lattices: a numerical analysis on static response and wave propagation. Proc Estonian Academy of Sciences 64(3):219–225

    Google Scholar 

  • dell’Isola F, Bucci S, Battista A (2016a) Against the fragmentation of knowledge: The power of multidisciplinary research for the design of metamaterials. In: Advanced Methods of Continuum Mechanics for Materials and Structures, Springer, pp 523–545

    Google Scholar 

  • dell’Isola F, Cuomo M, Greco L, Della Corte A (2016b) Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. Journal of Engineering Mathematics pp 1–31

    Google Scholar 

  • Dell’Isola F, Della Corte A, Esposito R, Russo L (2016) Some cases of unrecognized transmission of scientific knowledge: from antiquity to Gabrio Piola’s peridynamics and generalized continuum theories. In: Altenbach H, Forest S (eds) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol 42, Springer, Cham, pp 77–128

    Google Scholar 

  • dell’Isola F, Della Corte A, Giorgio I (2016) Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives. Mathematics and Mechanics of Solids 22(4):852–872

    Google Scholar 

  • Deng K, Ding Y, He Z, Zhao H, Shi J, Liu Z (2009) Theoretical study of subwavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics 105(12):124,909

    Google Scholar 

  • Deymier P (2013) Acoustic Metamaterials and Phononic Crystals. Springer Series in Solid-State Sciences, Springer Berlin Heidelberg

    Google Scholar 

  • Ding Y, Liu Z, Qiu C, Shi J (2007) Metamaterial with simultaneously negative bulk modulus and mass density. Physical Review Letters 99(9):093,904

    Google Scholar 

  • Eringen A (1976) Continuum Physics, vol 4: Polar and Nonlocal Field Theories. Academic Press, Inc., New York

    Google Scholar 

  • Esposito R, PulvirentiM(2004) From particles to fluids. Handbook of Mathematical Fluid Dynamics 3:1–82

    Google Scholar 

  • Eugster SR, dell’Isola F (2017) Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM 97(4):477–506

    Google Scholar 

  • Fang N, ** D, Xu J, Ambati M, Srituravanich W, Sun C, Zhang X (2006) Ultrasonic metamaterials with negative modulus. Nature Materials 5(6):452–456

    Google Scholar 

  • Ganghoffer J (2016) Spatial and material stress tensors in continuum mechanics of growing solid bodies. Mathematics and Mechanics of Complex Systems 3(4):341–363

    Google Scholar 

  • Giorgio I (2016) Numerical identification procedure between a micro-cauchy model and a macrosecond gradient model for planar pantographic structures. ZAMP 67(4)(95)

    Google Scholar 

  • Gokhale N, Cipolla J, Norris A (2012) Special transformations for pentamode acoustic cloaking. The Journal of the Acoustical Society of America 132(4):2932–2941

    Google Scholar 

  • Gu YW, Luo XD, Ma HR (2008) Optimization of the local resonant sonic material by tuning the shape of the resonator. Journal of Physics D: Applied Physics 41(20):205,402

    Google Scholar 

  • Guenneau S, Movchan A, Pétursson G, Ramakrishna S (2007) Acoustic metamaterials for sound focusing and confinement. New Journal of Physics 9(11):399

    Google Scholar 

  • Guild M, Alu A, Haberman M (2011) Cancellation of acoustic scattering from an elastic sphere. The Journal of the Acoustical Society of America 129(3):1355–1365

    Google Scholar 

  • Hirsekorn M (2004) Small-size sonic crystals with strong attenuation bands in the audible frequency range. Applied Physics Letters 84(17):3364–3366

    Google Scholar 

  • Hirsekorn M, Delsanto PP, Leung AC, Matic P (2006) Elastic wave propagation in locally resonant sonic material: Comparison between local interaction simulation approach and modal analysis. Journal of Applied Physics 99(12):124,912

    Google Scholar 

  • Hu J, Zhou X, Hu G (2009) Design method for electromagnetic cloak with arbitrary shapes based on Laplace’s equation. Optics Express 17(3):1308–1320

    Google Scholar 

  • Hu J, Chang Z, Hu G (2011) Approximate method for controlling solid elastic waves by transformation media. Physical Review B 84(20):201,101

    Google Scholar 

  • Huang H, Sun C (2009) Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics 11(1):013,003

    Google Scholar 

  • Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Optics Express 14(18):8247–8256

    Google Scholar 

  • Javili A, McBride A, Mergheim J, Steinmann P, Schmidt U (2013) Micro-to-macro transitions for continua with surface structure at the microscale. IJSS 50(16):2561–2572

    Google Scholar 

  • Jia H, Ke M, Hao R, Ye Y, Liu F, Liu Z (2010) Subwavelength imaging by a simple planar acoustic superlens. Applied Physics Letters 97(17):173,507

    Google Scholar 

  • Kildishev AV, Narimanov EE (2007) Impedance-matched hyperlens. Optics Letters 32(23):3432–3434

    Google Scholar 

  • Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure of periodic elastic composites. Physical Review Letters 71(13):2022

    Google Scholar 

  • Lacarbonara W (2013) Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling. Springer US

    Google Scholar 

  • Lee H, Liu Z, **ong Y, Sun C, Zhang X (2007) Development of optical hyperlens for imaging below the diffraction limit. Optics Express 15(24):15,886–15,891

    Google Scholar 

  • Li J, Chan C (2004) Double-negative acoustic metamaterial. Physical Review E 70(5):055,602

    Google Scholar 

  • Liu F, Cai F, Peng S, Hao R, Ke M, Liu Z (2009) Parallel acoustic near-field microscope: A steel slab with a periodic array of slits. Physical Review E 80(2):026,603

    Google Scholar 

  • Liu X, Hu G, Huang G, Sun C (2011a) An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters 98(25):251,907

    Google Scholar 

  • Liu X, Hu G, Sun C, Huang G (2011b) Wave propagation characterization and design of twodimensional elastic chiral metacomposite. Journal of Sound and Vibration 330(11):2536–2553

    Google Scholar 

  • Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736

    Google Scholar 

  • Liu Z, Lee H, **ong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315(5819):1686–1686

    Google Scholar 

  • Madeo A, Della Corte A, Greco L, Neff P (2014) Wave propagation in pantographic 2d lattices with internal discontinuities. ar**v preprint ar**v:14123926

  • Matsuki T, Yamada T, Izui K, Nishiwaki S (2014) Topology optimization for locally resonant sonic materials. Applied Physics Letters 104(19):191,905

    Google Scholar 

  • Milton G, Nicorovici N (2006) On the cloaking effects associated with anomalous localized resonance. Proc Royal Soc A 462(2074):3027–3059

    Google Scholar 

  • Milton G, Willis J (2007) On modifications of newton’s second law and linear continuum elastodynamics. Proc Royal Soc A 463:855–880

    Google Scholar 

  • Milton G, Briane M, Willis J (2006) On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics 8(10):248

    Google Scholar 

  • Milton G, Briane M, Harutyunyan D (2017) On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Mathematics and Mechanics of Complex Systems 5(1):41–94

    Google Scholar 

  • Misra A, Poorsolhjouy P (2015) Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Mathematics and Mechanics of Complex Systems 3(3):285–308

    Google Scholar 

  • Nadler B, Papadopoulos P, Steigmann D (2006) Multiscale constitutive modeling and numerical simulation of fabric material. IJSS 43(2):206–221

    Google Scholar 

  • Nemat-Nasser J Sand Willis, Srivas tava A, Amirkhizi A (2011) Homogenization of periodic elastic composites and locally resonant sonic materials. Phy Rev B 83(10):104,103

    Google Scholar 

  • Nemat-Nasser S (2015) Anti-plane shear waves in periodic elastic composites: band structure and anomalous wave refraction. Proc R Soc London A: Mathematical, Physical and Engineering Sciences 471(2180):20150,152

    Google Scholar 

  • Nemat-Nasser S, Srivastava A (2011) Negative effective dynamic mass-density and stiffness: Microarchitecture and phononic transport in periodic composites. AIP Advances 1(4):041,502

    Google Scholar 

  • Norris A (2009) Acoustic metafluids. The Journal of the Acoustical Society of America 125(2):839–849

    Google Scholar 

  • Norris A, Parnell W (2012) Hyperelastic cloaking theory: transformation elasticity with pre-stressed solids. Proc Royal Soc A 468(2146):2881–2903

    Google Scholar 

  • Norris A, Shuvalov A (2011) Elastic cloaking theory. Wave Motion 48(6):525–538

    Google Scholar 

  • Norris A, Shuvalov A, Kutsenko A (2012) Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proc Royal Soc A 468(2142):1629–1651

    Google Scholar 

  • Oates WS, Liu F (2009) Piezohydraulic actuator development for microjet flow control. Journal of Mechanical Design 131(9):091,001

    Google Scholar 

  • Oh JH, Ahn YK, Kim YY (2015) Maximization of operating frequency ranges of hyperbolic elastic metamaterials by topology optimization. Structural and Multidisciplinary Optimization 52(6):1023–1040

    Google Scholar 

  • Otero JA, Rodriguez-Ramos R, Monsivais G, Perez-Alvarez R (2005) Dynamical behavior of a layered piezocomposite using the asymptotic homogenization method. Mechanics of Materials 37(1):33–44

    Google Scholar 

  • Park YL, Majidi C, Kramer R, Bérard P, Wood RJ (2010) Hyperelastic pressure sensing with a liquid-embedded elastomer. Journal of Micromechanics and Microengineering 20(12):125,029

    Google Scholar 

  • Pendry J (2000) Negative refraction makes a perfect lens. Physical Review Tetters 85(18):3966

    Google Scholar 

  • Pendry J, Holden A, Stewart W, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters 76(25):4773

    Google Scholar 

  • Pideri C, Seppecher P (1997) A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mechanics and Thermodynamics 9(5):241–257

    Google Scholar 

  • Piola G (1825) Sull’applicazione de’principj della meccanica analitica del Lagrange ai principali problemi. Memoria di Gabrio Piola presentata al concorso del premio e coronata dall’IR Istituto di Scienze, ecc. nella solennità del giorno 4 ottobre 1824. dall’Imp. Regia stamperia

    Google Scholar 

  • Placidi L (2015) A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mechanics and Thermodynamics 27(4-5):623

    Google Scholar 

  • Placidi L (2016) A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mechanics and Thermodynamics 28(1-2):119–137

    Google Scholar 

  • Placidi L, dell’Isola F, Ianiro N, Sciarra G (2008) Variational formulation of pre-stressed solid–fluid mixture theory, with an application to wave phenomena. European Journal of Mechanics-A/Solids 27(4):582–606

    Google Scholar 

  • Placidi L, Rosi G, Giorgio I, Madeo A (2014) Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids 19(5):555–578

    Google Scholar 

  • Placidi L, Andreaus U, Giorgio I (2016a) Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. Journal of Engineering Mathematics pp 1–21

    Google Scholar 

  • Placidi L, Greco L, Bucci S, Turco E, Rizzi N (2016b) A second gradient formulation for a 2d fabric sheet with inextensible fibres. ZAMP 67(5)(114)

    Google Scholar 

  • Pulvirenti M (1996) Kinetic limits for stochastic particle systems. Lecture Notes in Mathematics, Springer

    Google Scholar 

  • Rahali Y, Giorgio I, Ganghoffer J, Dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. International Journal of Engineering Science 97:148–172

    Google Scholar 

  • Rinaldi A, Placidi L (2014) A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM 94(10):862–877

    Google Scholar 

  • Russo L, Levy S (2013) The Forgotten Revolution: How Science Was Born in 300 BC and Why it Had to Be Reborn. Springer Berlin Heidelberg

    Google Scholar 

  • Saeb S, Steinmann P, Javili A (2016) Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound. Applied Mechanics Reviews 68(5):050,801

    Google Scholar 

  • Salandrino A, Engheta N (2006) Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations. Physical Review B 74(7):075,103

    Google Scholar 

  • Sánchez-Dehesa J, Garcia-Chocano VM, Torrent D, Cervera F, Cabrera S, Simon F (2011) Noise control by sonic crystal barriers made of recycled materials. The Journal of the Acoustical Society of America 129(3):1173–1183

    Google Scholar 

  • Sathyamoorthy M (1997) Nonlinear Analysis of Structures, Mechanical and Aerospace Engineering Series, vol 8. CRC Press

    Google Scholar 

  • Sharma B, Sun C (2016) Impact load mitigation in sandwich beams using local resonators. Journal of Sandwich Structures & Materials 18(1):50–64

    Google Scholar 

  • Sieck C, Alù A, Haberman M (2015) Dynamic homogenization of acoustic metamaterials with coupled field response. Physics Procedia 70:275–278

    Google Scholar 

  • Sigalas M, Kushwaha MS, Economou EN, Kafesaki M, Psarobas IE, Steurer W (2005) Classical vibrational modes in phononic lattices: theory and experiment. Zeitschrift für Kristallographie-Crystalline Materials 220(9-10):765–809

    Google Scholar 

  • Smith J (2011) Application of the method of asymptotic homogenization to an acoustic metafluid. Proc R Soc London A: Mathematical, Physical and Engineering Sciences 467(2135):3318–3331

    Google Scholar 

  • Srivastava A (2015) Elastic metamaterials and dynamic homogenization: a review. International Journal of Smart and Nano Materials 6(1):41–60

    Google Scholar 

  • Srivastava A, Nemat-Nasser S (2012) Overall dynamic properties of three-dimensional periodic elastic composites. Proc R Soc London A: Mathematical, Physical and Engineering Sciences 468(2137):269–287

    Google Scholar 

  • Steigmann D (2008) Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. IJ Engng Sci 46(7):654–676

    Google Scholar 

  • Steigmann D, dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mechanica Sinica 31(3):372–382

    Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes’ new method for structural optimization. International Journal for Numerical Methods in Engineering 24(2):359–373

    Google Scholar 

  • Thompson DJ (2008) A continuous damped vibration absorber to reduce broad-band wave propagation in beams. Journal of Sound and Vibration 311(3):824–842

    Google Scholar 

  • Torrent D, Sánchez-Dehesa J (2008) Acoustic cloaking in two dimensions: a feasible approach. New Journal of Physics 10(6):063,015

    Google Scholar 

  • Torrent D, Pennec Y, Djafari-Rouhani B (2014) Effective medium theory for elastic metamaterials in thin elastic plates. Physical Review B 90(10):104–110

    Google Scholar 

  • Tripathi A, Bajaj AK (2016) Topology optimization and internal resonances in transverse vibrations of hyperelastic plates. IJSS 81:311–328

    Google Scholar 

  • Turco E, dell’Isola F, Cazzani A, Rizzi N (2016) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. ZAMP 67

    Google Scholar 

  • Veselago V (1967) Properties of materials having simultaneously negative values of the dielectric and magnetic susceptibilities. Soviet Physics Solid State USSR 8:2854–2856

    Google Scholar 

  • Veselago V (1968) The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi 10(4):509

    Google Scholar 

  • Veselago VG (2002) Electrodynamics of media with simultaneously negative electric permittivity and magnetic permeability. In: Advances in Electromagnetics of Complex Media and Metamaterials, Springer, pp 83–97

    Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering 192(1):227–246

    Google Scholar 

  • Wang X (2014) Dynamic behaviour of a metamaterial system with negative mass and modulus. IJSS 51(7):1534–1541

    Google Scholar 

  • Wang YF, Wang YS, Laude V (2015) Wave propagation in two-dimensional viscoelastic metamaterials. Physical Review B 92(10):104,110

    Google Scholar 

  • Waterman PC (1969) New formulation of acoustic scattering. The Journal of the Acoustical Society of America 45(6):1417–1429

    Google Scholar 

  • Willis J (2011) Effective constitutive relations for waves in composites and metamaterials. Proc Royal Soc A 467(2131):1865–1879

    Google Scholar 

  • Wu Y, Lai Y, Zhang Z (2011) Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters 107(10):105,506

    Google Scholar 

  • **ao Y, Wen J, Wen X (2012) Broadband locally resonant beams containing multiple periodic arrays of attached resonators. Physics Letters A 376(16):1384–1390

    Google Scholar 

  • **ao Y, Wen J, Yu D, Wen X (2013) Flexural wave propagation in beams with periodically attached vibration absorbers: Band-gap behavior and band formation mechanisms. Journal of Sound and Vibration 332(4):867–893

    Google Scholar 

  • **ong Y, Liu Z, Zhang X (2009) A simple design of flat hyperlens for lithography and imaging with half-pitch resolution down to 20 nm. Applied Physics Letters 94(20):203,108

    Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Computer Methods in Applied Mechanics and Engineering 199(45):2876–2891

    Google Scholar 

  • Yang Y, Misra A (2012) Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. IJSS 49(18):2500–2514

    Google Scholar 

  • Yao S, Zhou X, Hu G (2008) Experimental study on negative effective mass in a 1D mass-spring system. New Journal of Physics 10(4):043,020

    Google Scholar 

  • Yu D, Wen J, Zhao H, Liu Y, Wen X (2008) Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and vibration 318(1):193–205

    Google Scholar 

  • Zhang S, Yin L, Fang N (2009) Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters 102(19):194,301

    Google Scholar 

  • Zhang S, **a C, Fang N (2011) Broadband acoustic cloak for ultrasound waves. Physical Review Letters 106(2):024,301

    Google Scholar 

  • Zhou X, Hu G (2006) Design for electromagnetic wave transparency with metamaterials. Physical Review E 74(2):026,607

    Google Scholar 

  • Zhou X, Hu G (2007) Acoustic wave transparency for a multilayered sphere with acoustic metamaterials. Physical Review E 75(4):046,606

    Google Scholar 

  • Zhou X, Hu G (2009) Analytic model of elastic metamaterials with local resonances. Physical Review B 79(19):195,109

    Google Scholar 

  • Zhou X, Hu G, Lu T (2008) Elastic wave transparency of a solid sphere coated with metamaterials. Physical Review B 77(2):024,101

    Google Scholar 

  • Zhu R, Huang G, Huang H, Sun C (2011) Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Physics Letters A 375(30):2863–2867

    Google Scholar 

  • Zhu R, Liu X, Hu G, Sun C, Huang G (2014) A chiral elastic metamaterial beam for broadband vibration suppression. Journal of Sound and Vibration 333(10):2759–2773

    Google Scholar 

  • Zhu R, Liu X, Hu G, Yuan F, Huang G (2015) Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. International Journal of Smart and Nano Materials 6(1):14–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio di Cosmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

di Cosmo, F., Laudato, M., Spagnuolo, M. (2018). Acoustic Metamaterials Based on Local Resonances: Homogenization, Optimization and Applications. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation