Viscoelastic effective properties for composites with rectangular cross-section fibers using the asymptotic homogenization method

  • Chapter
  • First Online:
Generalized Models and Non-classical Approaches in Complex Materials 1

Abstract

The present work deals with the estimation of the linear viscoelastic effective properties for composites with periodic structure and rectangular cross-section fibers, using the two-scale asymptotic homogenization method (AHM). As a particular case, the effective properties for a layered medium with transversely isotropic properties are obtained. Two times the homogenization method, in different directions, according to the geometrical configuration of the composite material is applied for deriving the analytical expressions of the viscoelastic effective properties for a composite material with rectangular cross-section fibers, periodically distributed along one axis. In addition to that, models with different creep kernels, in particular, the Rabotnov’s kernel are analyzed. Finally, the numerical computation of the effective viscoelastic properties is developed for the analysis of the results. Moreover, a numerical algorithm using FEM is developed in the present work. Comparisons with other approaches are given as a validation of the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bakhvalov N, Panasenko GP (1989) Homogenisation: Averaging Processes in Periodic Media. Kluwer, Dordrecht

    Google Scholar 

  • Berger H, Gabbert U, Köppe H, Rodriguez-Ramos R, Bravo-Castillero J, Guinovart-Diaz R, Otero JA, Maugin GA (2003) Finite element and asymptotic homogenization methods applied to smart composite materials. Computational Mechanics 33(1):61–67

    Google Scholar 

  • Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Bravo-Castillero J, Guinovart-Diaz R, Sabina FJ, Maugin GA (2006) Unit cell models of piezoelectric fiber composites for numerical and analytical calculation of effective properties. Smart Materials and Structures 15(2):451–458

    Google Scholar 

  • Beurthey S, Zaoui A (2000) Structural morphology and relaxation spectra of viscoelastic heterogeneous materials. European Journal of Mechanics - A/Solids 19(1):1–16

    Google Scholar 

  • Blair GWS, Coppen FMV (1939) The subjective judgment of the elastic and plastic properties of soft bodies; the “differential thresholds” for viscosities and compression moduli. Proceedings of the Royal Society of London Series B, Biological Sciences 128(850):109–125

    Google Scholar 

  • Blair GWS, Coppen FMV (1943) The estimation of firmness in soft materials. The American Journal of Psychology 56(2):234–246

    Google Scholar 

  • Brenner R, Masson R, Castelnau O, Zaoui A (2002) A quasi-elastic affine formulation for the homogenised behaviour of nonlinear viscoelastic polycrystals and composites. European Journal of Mechanics - A/Solids 21(6):943–960

    Google Scholar 

  • Chen M, Dumont S, Dupaigne L, Goubet O (2010) Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete and Continuous Dynamical Systems 27(4):1473–1492

    Google Scholar 

  • Christensen RM (1969) Viscoelastic properties of heterogeneous media. Journal of the Mechanics and Physics of Solids 17(1):23–41

    Google Scholar 

  • Christensen RM (1971) Theory of Viscoelasticity. Academic Press, New York

    Google Scholar 

  • Dormieux L, Kondo D, Ulm FJ (2006) Microporomechanics. John Wiley & Sons, Chichester

    Google Scholar 

  • Dumont S, Duval JB (2013) Numerical investigation of asymptotical properties of solutions to models for waterways with non local viscosity. Int J Num Anal Modeling 10(2):333–349

    Google Scholar 

  • Hashin Z (1965) Viscoelastic behavior of heterogeneous media. Trans ASME J Appl Mech 32:630–636

    Google Scholar 

  • Hashin Z (1966) Viscoelastic fibre reinforced materials. AIAA Journal 4:1411–1417

    Google Scholar 

  • Hashin Z (1970a) Complex moduli of viscoelastic composites - I. General theory and application to particulate composites. Int J Solids Struct 6:539–552

    Google Scholar 

  • Hashin Z (1970b) Complex moduli of viscoelastic composites - II. Fibre reinforced materials. Int J Solids Struct 6:797–807

    Google Scholar 

  • Hollenbeck KJ (1998) Invlap.m: a Matlab function for numerical inversion of Laplace transforms by the Hoog algorithm URL http://www.mathworks.com

  • Kachanov M (1992) Effective elastic properties of cracked solids: critical review of some basic concepts. Appl Mech Rev 45(8):304–335

    Google Scholar 

  • Lahellec N, Suquet P (2007) Effective behavior of linear viscoelastic composites: A time-integration approach. International Journal of Solids and Structures 44(2):507–529

    Google Scholar 

  • Lavergne F, Sab K, Sanahuja J, Bornert M, Toulemonde C (2016) Homogenization schemes for aging linear viscoelastic matrix-inclusion composite materials with elongated inclusions. International Journal of Solids and Structures 80:545–560

    Google Scholar 

  • Laws N, McLaughlin R (1978) Self-consistent estimates for the viscoelastic creep compliances of composite materials. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences 359(1697):251–273

    Google Scholar 

  • Le QV, Meftah F, He QC, Le Pape Y (2007) Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the Mori-Tanaka homogenization scheme and a discrete microscopic retardation spectrum. Mechanics of Time-Dependent Materials 11(3):309–331

    Google Scholar 

  • Lévesque M, Gilchrist MD, Bouleau N, Derrien K, Baptiste D (2007) Numerical inversion of the Laplace–Carson transform applied to homogenization of randomly reinforced linear viscoelastic media. Computational Mechanics 40(4):771–789

    Google Scholar 

  • Maghous S, Creus GJ (2003) Periodic homogenization in thermoviscoelasticity: case of multilayered media with ageing. International Journal of Solids and Structures 40(4):851–870

    Google Scholar 

  • Otero JA, Bravo-Castillero J, Guinovart-Díaz R, Rodríguez-Ramos R, Maugin GA (2003) Analytical expressions of effective constants for a piezoelectric composite reinforced with square cross-section fibers. Arch Mech 55:357–371

    Google Scholar 

  • Persson LE, Persson L, Svanstedt N,Wyller J (1993) The Homogenization Method. An Introduction. Student litteratur, Lund

    Google Scholar 

  • Pipkin AC (1986) Lectures on Viscoelastic Theory. Springer, New York, Berlin, Heidelberg

    Google Scholar 

  • Pobedria BE (1984) Mechanics of Composite Materials (in Russ.). Moscow State University Press, Moscow

    Google Scholar 

  • Rabotnov YN (1948) Equilibrium of an elastic medium with after-effect (in Russ.). Prikladnaya Matematika i Mekhanika (J Appl Math Mech) 12(1):53–62

    Google Scholar 

  • Rabotnov YN (1977) Elements of Hereditary Solid Mechanics. Mir, Moscow

    Google Scholar 

  • Rabotnov YN (2014) Equilibrium of an elastic medium with after-effect. Fractional Calculus and Applied Analysis 17(3):684–696

    Google Scholar 

  • Ricaud JM, Masson R (2009) Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours. International Journal of Solids and Structures 46(7):1599–1606

    Google Scholar 

  • Schapery RA (1964) Application of thermodynamics to thermomechanical, fracture, and birefringent phenomena in viscoelastic media. Journal of Applied Physics 35(5):1451–1465

    Google Scholar 

  • Schapery RA (1967) Stress analysis of viscoelastic composite materials. Journal of Composite Materials 1(3):228–267

    Google Scholar 

  • Sevostianov I, Levin V, Radi E (2015) Effective properties of linear viscoelastic microcracked materials: Application of Maxwell homogenization scheme. Mechanics of Materials 84:28–43

    Google Scholar 

  • Sevostianov I, Levin V, Radi E (2016) Effective viscoelastic properties of short-fiber reinforced composites. International Journal of Engineering Science 100:61–73

    Google Scholar 

  • Sokolnikoff IS, Redheffer RM (1968) Mathematics of Physics and Modern Engineering. McGraw-Hill Book Company, Inc, New York, Toronto, London

    Google Scholar 

  • Wang YM, Weng GJ (1992) The influence of inclusion shape on the overall viscoelastic behavior of composites. Trans ASME J Appl Mech 59(3):510–518

    Google Scholar 

  • Zhang J, Ostoja-Starzewski M (2015) Mesoscale bounds in viscoelasticity of random composites. Mechanics Research Communications 68:98–104

    Google Scholar 

Download references

Acknowledgements

The authors would like to be grateful to University of Matanzas and Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Atizapan de Zaragoza, Estado de Mexico, for its support. France-Cuba project "Partenariat Hubert Curien franco-cubain Carlos J. Finlay" 2017-2018 and Proyecto Nacional de Ciencias Básicas 2017-2019 are gratefully acknowledged. Thanks to Departamento de Matemáticas y Mecánica IIMAS-UNAM and FENOMEC for their support and Ramiro Chávez Tovar and Ana Pérez Arteaga for computational assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar L. Cruz-González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cruz-González, O.L. et al. (2018). Viscoelastic effective properties for composites with rectangular cross-section fibers using the asymptotic homogenization method. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 1. Advanced Structured Materials, vol 89. Springer, Cham. https://doi.org/10.1007/978-3-319-72440-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72440-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72439-3

  • Online ISBN: 978-3-319-72440-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation