Anamorphosis Reformed: From Optical Illusions to Immersive Perspectives

  • Living reference work entry
  • First Online:
Handbook of the Mathematics of the Arts and Sciences

Abstract

We discuss a definition of conical anamorphosis that sets it at the foundation of both classical and curvilinear perspectives. In this view, anamorphosis is an equivalence relation between three-dimensional objects, which includes two-dimensional representatives, not necessarily flat. Vanishing points are defined in a canonical way that is maximally symmetric, with exactly two vanishing points for every line. The definition of the vanishing set works at the level of anamorphosis, before perspective is defined, with no need for a projection surface. Finally, perspective is defined as a flat representation of the visual data in the anamorphosis. This schema applies to both linear and curvilinear perspectives and is naturally adapted to immersive perspectives, such as the spherical perspectives. Mathematically, the view here presented is that the sphere and not the projective plane is the natural manifold of visual data up to anamorphic equivalence. We consider how this notion of anamorphosis may help to dispel some long-standing philosophical misconceptions regarding the nature of perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen K (1992) Brook Taylor’s Work on Linear Perspective: A Study of Taylor’s Role in the History of Perspective Geometry. Including Facsimiles of Taylor’s Two Books on Perspective. Springer, New York, vol 10, pp 1–67. https://doi.org/10.1007/978-1-4612-0935-5

    MathSciNet  MATH  Google Scholar 

  • Andersen K (2007) The geometry of an art: the history of the mathematical theory of perspective from Alberti to Monge. Springer Science & Business Media, New York

    MATH  Google Scholar 

  • Apostol TM, Mnatsakanian MA (2007) Unwrap** curves from cylinders and cones. Am Math Mon 114(5):388–416

    Article  MathSciNet  MATH  Google Scholar 

  • Araújo A (2015) A construction of the total spherical perspective in ruler, compass and Nail. https://arxiv.org/abs/1511.02969

  • Araújo A (2017a) Anamorphosis: optical games with perspective’s playful parent. In: Silva JN (ed) Proceedings of the Recreational Mathematics Colloquium V (2017) – G4G Europe. Associação Ludus, Lisbon, pp 71–86

    Google Scholar 

  • Araújo A (2017b) Cardboarding mixed reality with Durer machines. In: Proceedings of the 5th Conference on Computation, Communication, Aesthetics and X, pp 102–113

    Google Scholar 

  • Araújo A (2017c) A geometria (descritiva) da anamorfose e das perspectivas curvilíneas. In: Workshop “Matemática e Arte”, Sociedade Portuguesa de Matemática, pp 101–108

    Google Scholar 

  • Araújo A (2017d) Guidelines for Drawing Immersive Panoramas in Equirectangular Perspective. In: Proceedings of the 8th International Conference on Digital Arts – ARTECH2017, ACM Press, Macau, China, pp 93–99. https://doi.org/10.1145/3106548.3106606

    Chapter  Google Scholar 

  • Araújo A (2018a) Let’s Sketch in 360º: Spherical Perspectives for Virtual Reality Panoramas. In: Bridges 2018 Conference Proceedings, Tessellations Publishing, pp 637–644

    Google Scholar 

  • Araújo AB (2016) Topologia, anamorfose, e o bestiário das perspectivas curvilíneas. Convocarte–Revista de Ciências da Arte 2:51–69

    Google Scholar 

  • Araújo AB (2018b) Drawing equirectangular VR panoramas with ruler, compass, and protractor. J Sci Technol Arts 10(1):2–15. https://doi.org/10.7559/citarj.v10i1.471

    Article  Google Scholar 

  • Araújo AB (2018c) Ruler, compass, and nail: constructing a total spherical perspective. J Math Arts 12(2-3):144–169. https://doi.org/10.1080/17513472.2018.1469378

    Article  MathSciNet  MATH  Google Scholar 

  • Araújo AB (2019a) Eq A sketch 360, a serious toy for drawing Equirectangular spherical perspectives. In: Proceedings of the 9th International Conference on Digital and Interactive Arts, ACM, Braga Portugal, pp 1–8. https://doi.org/10.1145/3359852.3359893

    Google Scholar 

  • Araújo AB (2019b) A fisheye gyrograph: taking spherical perspective for a spin. In: Goldstine S, McKenna D, Fenyvesi K (eds) Proceedings of Bridges 2019: Mathematics, Art, Music, Architecture, Education, Culture, Tessellations Publishing, Phoenix, Arizona, pp 659–664

    Google Scholar 

  • Araújo AB, Olivero LF, Antinozzi S (2019a) HIMmaterial: exploring new hybrid media for immersive drawing and collage. In: Proceedings of the 9th International Conference on Digital and Interactive Arts, ACM, Braga Portugal, pp 1–4. https://doi.org/10.1145/3359852.3359950

    Google Scholar 

  • Araújo AB, Rossi A, Olivero LF (2019b) Boxing the visual sphere: towards a systematic solution of the cubical perspective. UID per il disegno (2019):33–40. https://doi.org/10.36165/1004

    Google Scholar 

  • Baltrušaitis J (1983) Les Perspectives Dépravées. Flammarion

    Google Scholar 

  • Barnard ST (1983) Interpreting perspective images. Artif Intell 21(4):435–462

    Article  Google Scholar 

  • Barre A, Flocon A (1968) La Perspective Curviligne. Flammarion, Paris

    MATH  Google Scholar 

  • Barre A, Flocon A, Bouligand G (1964) ’Etude comparée de différentes méthodes de perspective, une perspective curviligne. Bulletin de la Classe des Sciences de La Académie Royale de Belgique 5(L)

    Google Scholar 

  • Belisle B (2015) Nature at a glance: Immersive maps from panoramic to digital. Early Popular Visual Culture 13(4):313–335

    Article  Google Scholar 

  • Burton HE (1945) Euclid’s optics. J Opt Soc 35(5):357–372

    Article  MATH  Google Scholar 

  • Cabezos Bernal PM (2015) Imágenes estereoscópicas aplicadas a la representación arquitectónica. PhD Thesis, Universitat Politècnica de València

    Google Scholar 

  • Casas F (1983) Flat-sphere perspective. Leonardo 16(1):1–9

    Article  Google Scholar 

  • Catalano G (1986) Prospettiva Sferica. Università degli Studi di Palermo

    Google Scholar 

  • Coates P, Arayici Y, Koskela LJ, Kagioglou M, Usher C, O’ Reilly K (2010) The limitations of BIM in the architectural process. In: First International Conference on Sustainable Urbanization (ICSU 2010), Hong Kong, China

    Google Scholar 

  • Collins DL (1992) Anamorphosis and the eccentric observer: inverted perspective and construction of the gaze. Leonardo 25(1):73–82

    Article  Google Scholar 

  • Correia JV, Romão L, Ganhão SR, da Costa MC, Guerreiro AS, Henriques DP, Garcia S, Albuquerque C, Carmo MB, Cláudio AP, Chambel T, Burgess R, Marques C (2013) A New Extended Perspective System for Architectural Drawings. In: Zhang J, Sun C (eds) Global design and local materialization, vol 369. Springer, Berlin/Heidelberg, pp 63–75. https://doi.org/10.1007/978-3-642-38974-0_6

    Chapter  Google Scholar 

  • Correia V, Romão L (2007) Extended perspective system. In: Proceedings of the 25th eCAADe International Conference, pp 185–192

    Google Scholar 

  • Čučaković A, Paunović M (2016) Perspective in stage design: an application of principles of anamorphosis in spatial visualisation. Nexus Netw J 18(3):743–758. https://doi.org/10.1007/s00004-016-0297-5

    Article  MATH  Google Scholar 

  • Dept of Military Aeronautics USMADA (1918) Panoramic drawing, one-point and cylindrical perspective. G.P.O.

    Google Scholar 

  • Draper SW (1978) The Penrose triangle and a family of related figures. Perception 7(3):283–296. https://doi.org/10.1068/p070283

    Article  Google Scholar 

  • Dunham D (2019) The Bridges 2018 mathematical art exhibitions. J Math Arts 1–15. https://doi.org/10.1080/17513472.2019.1654330

  • Dutour É (1760) Discussion d’une question d’optique. l’Académie des Sciences. Memoires de Mathematique et de physique presentes par Divers Savants 3:514–530

    Google Scholar 

  • Ebbinghaus H (1902) Grundzüge Der Psychologie. Verlag von Viet & Co., Leipzig

    Book  Google Scholar 

  • Escher MC (1958) Belvedere

    Google Scholar 

  • Escher MC (1972) The Graphic work of M. C. Escher – Introduced And Explained By The Artist, New, Revised and Expanded Edition. Ballantine Books, New York

    Google Scholar 

  • Fasolo M, Mancini MF (2019) The ‘Architectural’ Projects for the Church of St. Ignatius by Andrea Pozzo. diségno (4):79–90. https://doi.org/10.26375/disegno.4.2019.09

  • Foley JD, Van FD, Van Dam A, Feiner SK, Hughes JF, Angel E, Hughes J (1996) Computer graphics: principles and practice, vol 12110. Addison-Wesley Professional

    MATH  Google Scholar 

  • Frigg R, Hunter M (2010) Beyond Mimesis and Convention: Representation in Art and Science, vol 262. Springer

    Book  Google Scholar 

  • Gay F, Cazzaro I (2019) Venetian perspective boxes: When the images become environments. In: Luigini A (ed) Proceedings of the 1st International and Interdisciplinary Conference on Digital Environments for Education, Arts and Heritage. EARTH 2018. Advances in Intelligent Systems and Computing, vol 919. Springer, Cham pp 95–105. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-030-12240-9_11

  • Gilman D (1992) A new perspective on pictorial representation. Aust J Philos 70(2). https://doi.org/10.1080/00048409212345061

  • Gombrich EH (1960) Art and illusion; a study in the psychology of pictorial representation. Pantheon Books, New York

    Google Scholar 

  • Goodman N (1968) Languages of art: an approach to a theory of symbols, 2nd edn. Hackett Publishing Company, Indianapolis

    Google Scholar 

  • Grau O (1999) Into the belly of the image: historical aspects of virtual reality. Leonardo 32(5):365–371. https://doi.org/10.1162/002409499553587

    Article  Google Scholar 

  • Herdman WG (1853) A treatise on the curvilinear perspective of nature; and its applicability to art. John Weale & co., London

    Google Scholar 

  • Hohenwarter M (2002) GeoGebra: Ein Softwaresystem für dynamische Geometrie und Algebra der Ebene. PhD thesis, Paris Lodron University, Salzburg, Austria

    Google Scholar 

  • Hohenwarter M, Borcherds M, Ancsin G, Bencze B, Blossier M, Delobelle A, Denizet C, Éliás J, Fekete Á, Gál L, Konečný Z, Kovács Z, Lizelfelner S, Parisse B, Sturr G (2013) GeoGebra 4.4

    Google Scholar 

  • Huffman DA (1968) Decision criteria for a class of ‘impossible objects’. In: Proceedings of the First Hawaii International Conference on System Sciences, Honolulu

    Google Scholar 

  • Huffman DA (1971) Impossible objects as nonsense sentences, Machine Intelligence 6. Machine Intelligence 6:295–323

    Google Scholar 

  • Huhtamo E (2013) Illusions in motion – media archaeology of the moving panorama and related spectacles, 1st edn. Leonardo Book Series, The MIT Press

    Book  Google Scholar 

  • Inglis T (2018) Constructing 3D perspective anamorphosis via surface projection. In: Bridges 2018 Conference Proceedings, Tessellations Publishing, pp 91–98

    Google Scholar 

  • Kemp M (1990) The science of art. Yale University Press, New Haven and London

    Google Scholar 

  • Kim Y, Chin S (2019) An analysis of the problems of BIM-based drawings and implementation during the construction document phase. In: 36th International Symposium on Automation and Robotics in Construction, Banff. https://doi.org/10.22260/ISARC2019/0025

  • Kulpa Z (1983) Are impossible figures possible? Signal Process 5(3):201–220. https://doi.org/10.1016/0165-1684(83)90069-5

  • Michel G (2013) ’L’oeil, au Centre de la Sphere Visuelle. Boletim da Aproged (30)

    Google Scholar 

  • Mitchell R (1801a) Plans, and views in perspective, with descriptions, of buildings erected in England and Scotland: and also an essay, to elucidate the Grecian, Roman and gothic architecture, accompanied with designs. Wilson & Company

    Google Scholar 

  • Mitchell R (1801b) Section of the Rotunda, Leicester Square | British Library – Picturing Places. https://www.bl.uk/collection-items/section-of-the-rotunda-leicester-square

  • Mitrović B (2013a) Nelson Goodman’s arguments against perspective: a geometrical analysis. Nexus Netw J 15(1):51–62. https://doi.org/10.1007/s00004-012-0133-5

    Article  MATH  Google Scholar 

  • Mitrović B (2013b) Visuality after Gombrich: the innocence of the eye and modern research in the philosophy and psychology of perception. Zeitschrift für Kunstgeschichte 76(H. 1):71–89

    Google Scholar 

  • Monroe MM, Redmann WG (1994) Apparatus and method for projection upon a three-dimensional object

    Google Scholar 

  • Moose M (1986) Guidelines for constructing a fisheye perspective. Leonardo 19(1):61–64

    Article  Google Scholar 

  • Morehead JC Jr (1955) Perspective and projective geometries: a comparison. Rice Institute Pamphlet-Rice University Studies 42(1):1–25

    MathSciNet  MATH  Google Scholar 

  • Necker LA (1832) Observations on some remarkable optical phænomena seen in Switzerland; and on an optical phænomenon which occurs on viewing a figure of a crystal or geometrical solid. Lond Edinb Dublin Philos Mag J Sci 1(5):329–337. https://doi.org/10.1080/14786443208647909

    Article  Google Scholar 

  • Norman DA (1990) Why interfaces don’t work. The art of human-computer interface design 218

    Google Scholar 

  • Oettermann S, Schneider DL (1997) The panorama: history of a mass medium, vol 2. Zone Books, New York

    Google Scholar 

  • Olivero LF, Sucurado B (2019) Inmersividad analógica: Descubriendo el dibujo esférico entre subjetividad y objetividad. Estoa Revista de la Facultad de Arquitectura y Urbanismo de la Universidad de Cuenca 8(16):80–109

    Google Scholar 

  • Olivero LF, Rossi A, Barba S (2019) A codification of the cubic projection to generate immersive models. diségno (4):53–63. https://doi.org/10.26375/disegno.4.2019.07

  • Panofsky E (1927) Die Perspektive asl’symbolische Form’. Vortrage der Bibliothek Warburg 1924–1925, vol 320

    Google Scholar 

  • Panofsky E (1991) Perspective as symbolic form. Zone Books, New York

    Google Scholar 

  • Papert S, Turkle S (1991) Epistemological Pluralism. In: Idit, Papert, Harel S (eds) Constructionism, Ablex Publishing Co., pp 161–191

    Google Scholar 

  • Penrose LS, Penrose R (1958) Impossible objects: a special type of visual illusion. Br J Psychol 49(1):31–33. https://doi.org/10.1111/j.2044-8295.1958.tb00634.x

    Article  Google Scholar 

  • Roberts B, Harris MG, Yates TA (2005) The Roles of Inducer Size and Distance in the Ebbinghaus Illusion (Titchener Circles). Perception 34(7):847–856. https://doi.org/10.1068/p5273

    Article  Google Scholar 

  • Rossi A, Olivero LF, Barba S (2018) “CubeME”, a variation for an immaterial rebuilding. In: Rappresentazione/Materiale/Immateriale Drawing as (in) Tangible Representation, Cangemi Editore, pp 31–36

    Google Scholar 

  • Rossi M (2016) Architectural perspective between image and building. Nexus Netw J 18(3):577–583. https://doi.org/10.1007/s00004-016-0311-y

    Article  Google Scholar 

  • Sánchez-Reyes J, Chacón JM (2016) Anamorphic free-form deformation. Comput Aided Geom Des 46:30–42

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez-Reyes J, Chacón JM (2020) How to make impossible objects possible: Anamorphic deformation of textured NURBS. Computer Aided Geom Des 78:101826. https://doi.org/10.1016/j.cagd.2020.101826

    Article  MathSciNet  MATH  Google Scholar 

  • Spencer J (2018) Illusion as ingenuity: Dutch perspective boxes in the Royal Danish Kunstkammer’s ‘Perspective Chamber’. J Hist Collections 30(2):187–201

    Article  Google Scholar 

  • Sugihara K (1982) Classification of impossible objects. Perception 11(1):65–74. https://doi.org/10.1068/p110065

    Article  Google Scholar 

  • Sugihara K (2000) ”Impossible objects” Are not necessarily impossible – mathematical study on optical illusion –. In: Goos G, Hartmanis J, van Leeuwen J, Akiyama J, Kano M, Urabe M (eds) Discrete and Computational Geometry, vol 1763, Springer, Berlin/Heidelberg, pp 305–316. https://doi.org/10.1007/978-3-540-46515-7_27

    Chapter  Google Scholar 

  • Sugihara K (2015a) Ambiguous cylinders: a new class of impossible objects. Comput Aided Drafting Des Manuf 25(4):19–25

    Google Scholar 

  • Sugihara K (2015b) Height reversal generated by rotation around a vertical axis. J Math Psychol 68:7–12

    Article  MathSciNet  MATH  Google Scholar 

  • Sugihara K (2016) Ambiguous Cylinder illusion. https://www.youtube.com/watch?v=oWfFco7K9v8

  • Sugihara K (2018) Topology-disturbing objects: a new class of 3D optical illusion. J Math Arts 12(1):2–18. https://doi.org/10.1080/17513472.2017.1368133

    Article  MathSciNet  MATH  Google Scholar 

  • Termes D (1998) New perspective systems. self-published

    Google Scholar 

  • Tomilin MG (2001) Anamorphoses-optical oddities of the Renaissance or sources of the science of image processing? J Opt Technol 68(9):723. https://doi.org/10.1364/JOT.68.000723

    Article  Google Scholar 

  • Tran Luciani D, Lundberg J (2016) Enabling designers to Sketch Immersive Fulldome presentations. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems – CHI EA ’16, ACM Press, San Jose, California, USA, pp 1490–1496. https://doi.org/10.1145/2851581.2892343

    Google Scholar 

  • Verstegen I (2011) Come dire oggettivamente che la prospettiva è relativa. Rivista di estetica (48):217–235

    Article  Google Scholar 

  • Verweij A (2010) Perspective in a box. In: Architecture, mathematics and perspective. Springer, pp 47–62

    MATH  Google Scholar 

  • Vuibert H (1912) Les Anaglyphes Géométriques. Librairie Vuibert, Paris

    MATH  Google Scholar 

  • Wade NJ, Ono H (2012) Early studies of binocular and stereoscopic vision 1. Jpn Psychol Res 54(1):54–70

    Article  Google Scholar 

  • Ware W (1900) Modern perspective: a treatise upon the principles and practice of plane and cylindrical perspective. The Macmillan company, New York; Macmillan & co., ltd., London

    Google Scholar 

  • Wheatstone C (1838) Contributions to the physiology of vision. Part the first. on some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos Trans R Soc Lond 128:371–394

    Google Scholar 

  • Wheatstone C (1852) Contributions to the physiology of vision. Part the Second. On some remarkable, and hitherto unobserved, phenomena of binocular vision (continued). Philos Trans R Soc Lond 142:1–17

    Google Scholar 

Download references

Acknowledgements

A. B. Araújo was funded by FCT Portuguese national funds through project UIDB/Multi/04019/2020

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António B. Araújo .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Araújo, A.B. (2020). Anamorphosis Reformed: From Optical Illusions to Immersive Perspectives. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_101-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70658-0_101-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation