Recent Advances in Pathogenesis and Medical Management of Vitiligo

  • Chapter
  • First Online:
Pigmentary Skin Disorders

Part of the book series: Updates in Clinical Dermatology ((UCD))

  • 1647 Accesses

Abstract

Vitiligo is a common pigmentary disorder characterised by the loss of functioning melanocytes from the basal layer of epidermis, leaving behind depigmented patches on the skin. It has a complex aetiopathology. Even though there are various theories describing the pathomechanisms of melanocyte loss, the initial trigger for melanocyte directed attack and the final steps causing melanocyte destruction is still speculative. The poor understanding of a common pathway causing melanocyte loss reflects in the lack of a targeted therapy in the medical management of vitiligo in this era of biologicals. The unravelling of interferon (IFN)-γ/CXCL10 axis in the causation of melanocyte directed attack and the observation of clinical usefulness of tofacitinib, which blocks the same pathway, give new hope in the direction of targeted therapy in vitiligo. In vitiligo, unlike psoriasis, the physician needs to address not only the issue of halting the inflammatory cascade causing the overt manifestation of the disease but also that of reviving the lost melanocytes, to regain normal skin colour. This chapter discusses the recent advances in the understanding of vitiligo pathogenesis and includes an update on the conventional and newer modalities in the medical management of vitiligo. A brief overview of the approach to the medical management of vitiligo is given at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 88.39
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 124.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Spritz RA. The genetics of generalized vitiligo and associated autoimmune diseases. Pigment Cell Res. 2007;20:271–8.

    Article  CAS  PubMed  Google Scholar 

  2. Sehgal VN, Srivastava G. Vitiligo: compendium of clinico-epidemiological features. Indian J Dermatol Venereol Leprol. 2007;73:149–56.

    Article  PubMed  Google Scholar 

  3. Parsad D, Pandhi R, Dogra S, Kanwar AJ, Kumar B. Dermatology life quality index score in vitiligo and its impact on the treatment outcome. Br J Dermatol. 2003;148:373–4.

    Article  CAS  PubMed  Google Scholar 

  4. Behl PN, Bhatia RK. 400 cases of vitiligo. A clinico-therapeutic analysis. Indian J Dermatol. 1972;17:51–6.

    CAS  PubMed  Google Scholar 

  5. Picardo M, Dell’Anna ML, Ezzedine K, Hamzavi I, Harris JE, Parsad D, et al. Vitiligo. Nat Rev Dis Primers. 2015;1:15011.

    Article  PubMed  Google Scholar 

  6. Herane MI. Vitiligo and leukoderma in children. Clin Dermatol. 2003;21:283–95.

    Article  PubMed  Google Scholar 

  7. Nicolaidou E, Antoniou C, Miniati A, Lagogianni E, Matekovits A, Stratigos A, et al. Childhood- and later-onset vitiligo have diverse epidemiologic and clinical characteristics. J Am Acad Dermatol. 2012;66:954–8.

    Article  PubMed  Google Scholar 

  8. Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, et al. Revised classification/nomenclature of vitiligo and related issues: the vitiligo global issues consensus conference. Pigment Cell Melanoma Res. 2012;25:E1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hann SK, Lee HJ. Segmental vitiligo: clinical findings in 208 patients. J Am Acad Dermatol. 1996;35:671–4.

    Article  CAS  PubMed  Google Scholar 

  10. Koga M, Tango T. Clinical features and course of type a and type B vitiligo. Br J Dermatol. 1988;118:223–8.

    Article  CAS  PubMed  Google Scholar 

  11. van Geel N, De Lille S, Vandenhaute S, Gauthier Y, Mollet I, Brochez L, et al. Different phenotypes of segmental vitiligo based on a clinical observational study. J Eur Acad Dermatol Venereol. 2011;25:673–8.

    Article  PubMed  Google Scholar 

  12. van Geel NA, Mollet IG, De Schepper S, T** EP, Vermaelen K, Clark RA, et al. First histopathological and immunophenotypic analysis of early dynamic events in a patient with segmental vitiligo associated with halo nevi. Pigment Cell Melanoma Res. 2010;23:375–84.

    Article  PubMed  Google Scholar 

  13. Hann SK, Chang JH, Lee HS, Kim SM. The classification of segmental vitiligo on the face. Yonsei Med J. 2000;41:209–12.

    Article  CAS  PubMed  Google Scholar 

  14. van Geel N, Bosma S, Boone B, Speeckaert R. Classification of segmental vitiligo on the trunk. Br J Dermatol. 2014;170:322–7.

    Article  PubMed  Google Scholar 

  15. van Geel N, Mollet I, Brochez L, Dutre M, De Schepper S, Verhaeghe E, et al. New insights in segmental vitiligo: case report and review of theories. Br J Dermatol. 2012;166:240–6.

    Article  PubMed  CAS  Google Scholar 

  16. Ezzedine K, Gauthier Y, Leaute-Labreze C, Marquez S, Bouchtnei S, Jouary T, et al. Segmental vitiligo associated with generalized vitiligo (mixed vitiligo): a retrospective case series of 19 patients. J Am Acad Dermatol. 2011;65:965–71.

    Article  PubMed  Google Scholar 

  17. Ezzedine K, Mahe A, van Geel N, Cardot-Leccia N, Gauthier Y, Descamps V, et al. Hypochromic vitiligo: delineation of a new entity. Br J Dermatol. 2015;172:716–21.

    Article  CAS  PubMed  Google Scholar 

  18. Ezzedine K, Amazan E, Seneschal J, Cario-Andre M, Leaute-Labreze C, Vergier B, et al. Follicular vitiligo: a new form of vitiligo. Pigment Cell Melanoma Res. 2012;25:527–9.

    Article  PubMed  Google Scholar 

  19. Lommerts JE, Schilder Y, de Rie MA, Wolkerstorfer A, Bekkenk MW. Focal vitiligo: long-term follow-up of 52 cases. J Eur Acad Dermatol Venereol. 2016;30:1550–4.

    Article  CAS  PubMed  Google Scholar 

  20. Passeron T, Ortonne J-P. Generalized vitiligo. In: Picardo M, Taïeb A, editors. Vitiligo. Heidelberg: Springer; 2010. p. 35–9.

    Chapter  Google Scholar 

  21. Le Poole IC, Das PK, van den Wijngaard RM, Bos JD, Westerhof W. Review of the etiopathomechanism of vitiligo: a convergence theory. Exp Dermatol. 1993;2:145–53.

    Article  PubMed  Google Scholar 

  22. Ongenae K, Van Geel N, Naeyaert JM. Evidence for an autoimmune pathogenesis of vitiligo. Pigment Cell Res. 2003;16:90–100.

    Article  PubMed  Google Scholar 

  23. Lerner AB. On the etiology of vitiligo and gray hair. Am J Med. 1971;51:141–7.

    Article  CAS  PubMed  Google Scholar 

  24. Spritz RA. Modern vitiligo genetics sheds new light on an ancient disease. J Dermatol. 2013;40:310–8.

    Article  CAS  PubMed  Google Scholar 

  25. Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003;16:208–14.

    Article  PubMed  Google Scholar 

  26. Chen JX, Shi Q, Wang XW, Guo S, Dai W, Li K, et al. Genetic polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) and risk of vitiligo in Han Chinese populations: a genotype-phenotype correlation study. Br J Dermatol. 2014;170:1092–9.

    Article  CAS  PubMed  Google Scholar 

  27. ** Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48:1418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang P, Li Y, Nie H, Zhang X, Shao Q, Hou X, et al. The changes of gene expression profiling between segmental vitiligo, generalized vitiligo and healthy individual. J Dermatol Sci. 2016;84:40–9.

    Article  CAS  PubMed  Google Scholar 

  29. Paradisi A, Tabolli S, Didona B, Sobrino L, Russo N, Abeni D. Markedly reduced incidence of melanoma and nonmelanoma skin cancer in a nonconcurrent cohort of 10,040 patients with vitiligo. J Am Acad Dermatol. 2014;71:1110–6.

    Article  PubMed  Google Scholar 

  30. Teulings HE, Limpens J, Jansen SN, Zwinderman AH, Reitsma JB, Spuls PI, et al. Vitiligo-like depigmentation in patients with stage III-IV melanoma receiving immunotherapy and its association with survival: a systematic review and meta-analysis. J Clin Oncol. 2015;33:773–81.

    Article  CAS  PubMed  Google Scholar 

  31. Manga P, Elbuluk N, Orlow SJ. Recent advances in understanding vitiligo. F1000Res. 2016;5 https://www.ncbi.nlm.nih.gov/pubmed/?term=Recent+advances+in+understanding+vitiligo.+F1000

  32. ** Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, et al. Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med. 2010;362:1686–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Speeckaert R, Voet S, Hoste E, van Geel N. S100B is a potential disease activity marker in nonsegmental vitiligo. J Invest Dermatol. 2017;137:1445–53.

    Article  CAS  PubMed  Google Scholar 

  34. Richmond JM, Frisoli ML, Harris JE. Innate immune mechanisms in vitiligo: danger from within. Curr Opin Immunol. 2013;25:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jacquemin C, Rambert J, Guillet S, Thiolat D, Boukhedouni N, Doutre MS, et al. HSP70 potentiates interferon-alpha production by plasmacytoid dendritic cells: relevance for cutaneous lupus and vitiligo pathogenesis. Br J Dermatol. 2017;177(5):1367–1375.

    Article  CAS  PubMed  Google Scholar 

  36. Toosi S, Orlow SJ, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132:2601–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ogg GS, Rod Dunbar P, Romero P, Chen JL, Cerundolo V. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med. 1998;188:1203–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol. 2012;132:1869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrari SM, Fallahi P, Santaguida G, Virili C, Ruffilli I, Ragusa F, et al. Circulating CXCL10 is increased in non-segmental vitiligo, in presence or absence of autoimmune thyroiditis. Autoimmun Rev. 2017;16:946–50.

    Article  CAS  PubMed  Google Scholar 

  40. Rezk AF, Kemp DM, El-Domyati M, El-Din WH, Lee JB, Uitto J, et al. Misbalanced CXCL12 and CCL5 chemotactic signals in vitiligo onset and progression. J Invest Dermatol. 2017;137:1126–34.

    Article  CAS  PubMed  Google Scholar 

  41. Lili Y, Yi W, Ji Y, Yue S, Weimin S, Ming L. Global activation of CD8+ cytotoxic T lymphocytes correlates with an impairment in regulatory T cells in patients with generalized vitiligo. PLoS One. 2012;7:e37513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou L, Li K, Shi YL, Hamzavi I, Gao TW, Henderson M, et al. Systemic analyses of immunophenotypes of peripheral T cells in non-segmental vitiligo: implication of defective natural killer T cells. Pigment Cell Melanoma Res. 2012;25:602–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiao Z, Wang X, **ang L, Zhang C. Dysfunction of autophagy: a possible mechanism involved in the pathogenesis of vitiligo by breaking the redox balance of melanocytes. Oxidative Med Cell Longev. 2016;2016:7.

    Google Scholar 

  44. Boissy RE, Manga P. On the etiology of contact/occupational vitiligo. Pigment Cell Res. 2004;17:208–14.

    Article  CAS  PubMed  Google Scholar 

  45. Schallreuter KU, Elwary SM, Gibbons NC, Rokos H, Wood JM. Activation/deactivation of acetylcholinesterase by H2O2: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Commun. 2004;315:502–8.

    Article  CAS  PubMed  Google Scholar 

  46. Regazzetti C, Joly F, Marty C, Rivier M, Mehul B, Reiniche P, et al. Transcriptional analysis of vitiligo skin reveals the alteration of WNT pathway: a promising target for repigmenting vitiligo patients. J Invest Dermatol. 2015;135:3105–14.

    Article  CAS  PubMed  Google Scholar 

  47. Vaccaro M, Bagnato G, Cristani M, Borgia F, Spatari G, Tigano V, et al. Oxidation products are increased in patients affected by non-segmental generalized vitiligo. Arch Dermatol Res. 2017;309:485–90.

    Article  CAS  PubMed  Google Scholar 

  48. Yang Y, Li S, Zhu G, Zhang Q, Wang G, Gao T, et al. A similar local immune and oxidative stress phenotype in vitiligo and halo nevus. J Dermatol Sci. 2017;87:50–9.

    Article  CAS  PubMed  Google Scholar 

  49. Hasse S, Gibbons NC, Rokos H, Marles LK, Schallreuter KU. Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for H2O2 stress. J Invest Dermatol. 2004;122:307–13.

    Article  CAS  PubMed  Google Scholar 

  50. Rokos H, Beazley WD, Schallreuter KU. Oxidative stress in vitiligo: photo-oxidation of pterins produces H(2)O(2) and pterin-6-carboxylic acid. Biochem Biophys Res Commun. 2002;292:805–11.

    Article  CAS  PubMed  Google Scholar 

  51. Dell’anna ML, Picardo M. A review and a new hypothesis for non-immunological pathogenetic mechanisms in vitiligo. Pigment Cell Res. 2006;19:406–11.

    Article  PubMed  Google Scholar 

  52. Kim J, Nakasaki M, Todorova D, Lake B, Yuan CY, Jamora C, et al. p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells. Cell Death Dis. 2014;5:e1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salem MM, Shalbaf M, Gibbons NC, Chavan B, Thornton JM, Schallreuter KU, Enhanced DNA. Binding capacity on up-regulated epidermal wild-type p53 in vitiligo by H2O2-mediated oxidation: a possible repair mechanism for DNA damage. FASEB J. 2009;23:3790–807.

    Article  CAS  PubMed  Google Scholar 

  54. Bondanza S, Maurelli R, Paterna P, Migliore E, Giacomo FD, Primavera G, et al. Keratinocyte cultures from involved skin in vitiligo patients show an impaired in vitro behaviour. Pigment Cell Res. 2007;20:288–300.

    Article  CAS  PubMed  Google Scholar 

  55. Fukunaga-Kalabis M, Hristova DM, Wang JX, Li L, Heppt MV, Wei Z, et al. UV-induced Wnt7a in the human skin microenvironment specifies the fate of neural crest-like cells via suppression of notch. J Invest Dermatol. 2015;135:1521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seleit I, Bakry OA, Abdou AG, Dawoud NM. Immunohistochemical expression of aberrant Notch-1 signaling in vitiligo: an implication for pathogenesis. Ann Diagn Pathol. 2014;18:117–24.

    Article  PubMed  Google Scholar 

  57. Rani S, Bhardwaj S, Srivastava N, Sharma VL, Parsad D, Kumar R. Senescence in the lesional fibroblasts of non-segmental vitiligo patients. Arch Dermatol Res. 2017;309:123–32.

    Article  CAS  PubMed  Google Scholar 

  58. Gauthier Y, Cario-Andre M, Lepreux S, Pain C, Taieb A. Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. Br J Dermatol. 2003;148:95–101.

    Article  CAS  PubMed  Google Scholar 

  59. Wagner RY, Luciani F, Cario-Andre M, Rubod A, Petit V, Benzekri L, et al. Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. J Invest Dermatol. 2015;135:1810–9.

    Article  CAS  PubMed  Google Scholar 

  60. Kim NH, Lee AY. Reduced aquaporin3 expression and survival of keratinocytes in the depigmented epidermis of vitiligo. J Invest Dermatol. 2010;130:2231–9.

    Article  CAS  PubMed  Google Scholar 

  61. Li L, Wu Y, Li L, Sun Y, Qiu L, Gao XH, et al. Triple combination treatment with fractional CO2 laser plus topical betamethasone solution and narrowband ultraviolet B for refractory vitiligo: a prospective, randomized half-body, comparative study. Dermatol Ther. 2015;28:131–4.

    Article  PubMed  Google Scholar 

  62. Bae JM, Yoo HJ, Kim H, Lee JH, Kim GM. Combination therapy with 308-nm excimer laser, topical tacrolimus, and short-term systemic corticosteroids for segmental vitiligo: a retrospective study of 159 patients. J Am Acad Dermatol. 2015;73:76–82.

    Article  CAS  PubMed  Google Scholar 

  63. Hossani-Madani AR, Halder RM. Topical treatment and combination approaches for vitiligo: new insights, new developments. G Ital Dermatol Venereol. 2010;145:57–78.

    CAS  PubMed  Google Scholar 

  64. Abdel Latif AA, Ibrahim SM. Monochromatic excimer light versus combination of topical steroid with vitamin D3 analogue in the treatment of nonsegmental vitiligo: a randomized blinded comparative study. Dermatol Ther. 2015;28:383–9.

    Article  PubMed  Google Scholar 

  65. Yazdani Abyaneh M, Griffith RD, Falto-Aizpurua L, Nouri K. Narrowband ultraviolet B phototherapy in combination with other therapies for vitiligo: mechanisms and efficacies. J Eur Acad Dermatol Venereol. 2014;28:1610–22.

    Article  CAS  PubMed  Google Scholar 

  66. Van Driessche F, Silverberg N. Current management of pediatric vitiligo. Paediatr Drugs. 2015;17:303–13.

    Article  PubMed  Google Scholar 

  67. Taieb A, Alomar A, Bohm M, Dell’anna ML, De Pase A, Eleftheriadou V, et al. Guidelines for the management of vitiligo: the European dermatology forum consensus. Br J Dermatol. 2013;168:5–19.

    Article  CAS  PubMed  Google Scholar 

  68. Bayoumi W, Fontas E, Sillard L, Le Duff F, Ortonne JP, Bahadoran P, et al. Effect of a preceding laser dermabrasion on the outcome of combined therapy with narrowband ultraviolet B and potent topical steroids for treating nonsegmental vitiligo in resistant localizations. Br J Dermatol. 2012;166:208–11.

    Article  CAS  PubMed  Google Scholar 

  69. Khurrum H, AlGhamdi KM, Osman E. Screening of glaucoma or cataract prevalence in vitiligo patients and its relationship with periorbital steroid use. J Cutan Med Surg. 2016;20:146–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lan CC, CS W, Chen GS, Yu HS. FK506 (tacrolimus) and endothelin combined treatment induces mobility of melanoblasts: new insights into follicular vitiligo repigmentation induced by topical tacrolimus on sun-exposed skin. Br J Dermatol. 2011;164:490–6.

    CAS  PubMed  Google Scholar 

  71. Radakovic S, Breier-Maly J, Konschitzky R, Kittler H, Sator P, Hoenigsmann H, et al. Response of vitiligo to once- vs. twice-daily topical tacrolimus: a controlled prospective, randomized, observer-blinded trial. J Eur Acad Dermatol Venereol. 2009;23:951–3.

    Article  CAS  PubMed  Google Scholar 

  72. Margolis DJ, Abuabara K, Hoffstad OJ, Wan J, Raimondo D, Bilker WB. Association between malignancy and topical use of pimecrolimus. JAMA Dermatol. 2015;151:594–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Siegfried EC, Jaworski JC, Hebert AA. Topical calcineurin inhibitors and lymphoma risk: evidence update with implications for daily practice. Am J Clin Dermatol. 2013;14:163–78.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cavalie M, Ezzedine K, Fontas E, Montaudie H, Castela E, Bahadoran P, et al. Maintenance therapy of adult vitiligo with 0.1% tacrolimus ointment: a randomized, double blind, placebo-controlled study. J Invest Dermatol. 2015;135:970–4.

    Article  CAS  PubMed  Google Scholar 

  75. Li QL, YH W, Niu M, XJ L, Huang YH, He DH. Protective effects of tacalcitol against oxidative damage in human epidermal melanocytes. Int J Dermatol. 2017;56:232–8.

    Article  CAS  PubMed  Google Scholar 

  76. **ng C, Xu A. The effect of combined calcipotriol and betamethasone dipropionate ointment in the treatment of vitiligo: an open, uncontrolled trial. J Drugs Dermatol. 2012;11:e52–4.

    PubMed  Google Scholar 

  77. Sahu P, Jain VK, Aggarwal K, Kaur S, Dayal S. Tacalcitol: a useful adjunct to narrow-band ultraviolet-B phototherapy in vitiligo. Photodermatol Photoimmunol Photomed. 2016;32:262–8.

    Article  CAS  PubMed  Google Scholar 

  78. Khullar G, Kanwar AJ, Singh S, Parsad D. Comparison of efficacy and safety profile of topical calcipotriol ointment in combination with NB-UVB vs. NB-UVB alone in the treatment of vitiligo: a 24-week prospective right-left comparative clinical trial. J Eur Acad Dermatol Venereol. 2015;29:925–32.

    Article  CAS  PubMed  Google Scholar 

  79. Kanwar AJ, Mahajan R, Parsad D. Low-dose oral mini-pulse dexamethasone therapy in progressive unstable vitiligo. J Cutan Med Surg. 2013;17:259–68.

    Article  CAS  PubMed  Google Scholar 

  80. Lee J, Chu H, Lee H, Kim M, Kim DS, Retrospective Study OSHA. Of methylprednisolone mini-pulse therapy combined with narrow-band UVB in non-segmental vitiligo. Dermatology. 2016;232:224–9.

    Article  CAS  PubMed  Google Scholar 

  81. El Mofty M, Essmat S, Youssef R, Sobeih S, Mahgoub D, Ossama S, et al. The role of systemic steroids and phototherapy in the treatment of stable vitiligo: a randomized controlled trial. Dermatol Ther. 2016;29:406–12.

    Article  PubMed  Google Scholar 

  82. Shenoi SD, Prabhu S. Photochemotherapy (PUVA) in psoriasis and vitiligo. Indian J Dermatol Venereol Leprol. 2014;80:497–504.

    Article  PubMed  Google Scholar 

  83. Singh S, Khandpur S, Sharma VK, Ramam M. Comparison of efficacy and side-effect profile of oral PUVA vs. oral PUVA sol in the treatment of vitiligo: a 36-week prospective study. J Eur Acad Dermatol Venereol. 2013;27:1344–51.

    Article  CAS  PubMed  Google Scholar 

  84. Ibrahim ZA, El-Ashmawy AA, El-Tatawy RA, Sallam FA. The effect of platelet-rich plasma on the outcome of short-term narrowband-ultraviolet B phototherapy in the treatment of vitiligo: a pilot study. J Cosmet Dermatol. 2016;15:108–16.

    Article  PubMed  Google Scholar 

  85. Abdelghani R, Ahmed NA, Darwish HM. Combined treatment with fractional carbon dioxide laser, autologous platelet-rich plasma, and narrow band ultraviolet B for vitiligo in different body sites: a prospective, randomized comparative trial. J Cosmet Dermatol. 2017. http://doi: 10.1111/jocd.12397.

  86. **ao BH, Wu Y, Sun Y, Chen HD, Gao XH. Treatment of vitiligo with NB-UVB: a systematic review. J Dermatolog Treat. 2015;26:340–6.

    Article  PubMed  Google Scholar 

  87. Jo SJ, Kwon HH, Choi MR, Youn JI. No evidence for increased skin cancer risk in Koreans with skin phototypes III-V treated with narrowband UVB phototherapy. Acta Derm Venereol. 2011;91:40–3.

    Article  PubMed  Google Scholar 

  88. El Mofty M, Bosseila M, Mashaly HM, Gawdat H, Makaly H. Broadband ultraviolet A vs. psoralen ultraviolet A in the treatment of vitiligo: a randomized controlled trial. Clin Exp Dermatol. 2013;38:830–5.

    Article  PubMed  Google Scholar 

  89. Leone G, Tanew A. UVB total body and targeted phototherapies. In: Picardo M, Taïeb A, editors. Vitiligo. Heidelberg: Springer; 2010. p. 359–65.

    Google Scholar 

  90. Werfel T, Holiangu F, Niemann KH, Schmerling O, Lullau F, Zedler A, et al. Digital ultraviolet therapy: a novel therapeutic approach for the targeted treatment of psoriasis vulgaris. Br J Dermatol. 2015;172:746–53.

    Article  CAS  PubMed  Google Scholar 

  91. Reidel U, Bechstein S, Lange-Asschenfeldt B, Beyer M, Vandersee S. Treatment of localized mycosis fungoides with digital UV photochemotherapy. Photodermatol Photoimmunol Photomed. 2015;31:333–40.

    Article  PubMed  Google Scholar 

  92. Mysore V, Shashikumar BM. Targeted phototherapy. Indian J Dermatol Venereol Leprol. 2016;82:1–6.

    Article  PubMed  Google Scholar 

  93. Majid I, Imran S. Targeted ultraviolet B phototherapy in vitiligo: a comparison between once-weekly and twice-weekly treatment regimens. Indian J Dermatol Venereol Leprol. 2015;81:600–5.

    Article  PubMed  Google Scholar 

  94. Dillon JP, Ford C, Hynan LS, Pandya AG. A cross-sectional, comparative study of home vs in-office NB-UVB phototherapy for vitiligo. Photodermatol Photoimmunol Photomed. 2015;33:282–3.

    Article  Google Scholar 

  95. Hossain C, Porto DA, Hamzavi I, Lim HW. Camouflaging agents for vitiligo patients. J Drugs Dermatol. 2016;15:384–7.

    CAS  PubMed  Google Scholar 

  96. Solano F, Briganti S, Picardo M, Ghanem G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006;19:550–71.

    Article  CAS  PubMed  Google Scholar 

  97. AlGhamdi KM, Kumar A. Depigmentation therapies for normal skin in vitiligo universalis. J Eur Acad Dermatol Venereol. 2011;25:749–57.

    Article  CAS  PubMed  Google Scholar 

  98. Whitton ME, Pinart M, Batchelor J, Leonardi-Bee J, Gonzalez U, Jiyad Z, et al (2015) Interventions for vitiligo. Cochrane Database Syst Rev (2):CD003263.

    Google Scholar 

  99. Kruger C, Smythe JW, Spencer JD, Hasse S, Panske A, Chiuchiarelli G, et al. Significant immediate and long-term improvement in quality of life and disease co** in patients with vitiligo after group climatotherapy at the Dead Sea. Acta Derm Venereol. 2011;91:152–9.

    Article  PubMed  Google Scholar 

  100. Shah R, Hunt J, Webb TL, Thompson AR. Starting to develop self-help for social anxiety associated with vitiligo: using clinical significance to measure the potential effectiveness of enhanced psychological self-help. Br J Dermatol. 2014;171:332–7.

    Article  CAS  PubMed  Google Scholar 

  101. Jha A, Mehta M, Khaitan BK, Sharma VK, Ramam M. Cognitive behavior therapy for psychosocial stress in vitiligo. Indian J Dermatol Venereol Leprol. 2016;82:308–10.

    Article  PubMed  Google Scholar 

  102. Craiglow BG, King BA. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol. 2015;151:1110–2.

    Article  PubMed  Google Scholar 

  103. Liu LY, Strassner JP, Refat MA, Harris JE, King BA. Repigmentation in vitiligo using the Janus kinase inhibitor tofacitinib may require concomitant light exposure. J Am Acad Dermatol. 2017;77:675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harris JE, Rashighi M, Nguyen N, Jabbari A, Ulerio G, Clynes R, et al. Rapid skin repigmentation on oral ruxolitinib in a patient with coexistent vitiligo and alopecia areata (AA). J Am Acad Dermatol. 2016;74:370–1.

    Article  PubMed  Google Scholar 

  105. Rothstein B, Joshipura D, Saraiya A, Abdat R, Ashkar H, Turkowski Y, et al. Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J Am Acad Dermatol. 2017;76:1054–60.e1.

    Article  CAS  PubMed  Google Scholar 

  106. Agarwal P, Rashighi M, Essien KI, Richmond JM, Randall L, Pazoki-Toroudi H, et al. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol. 2015;135:1080–8.

    Article  CAS  PubMed  Google Scholar 

  107. Noel M, Gagne C, Bergeron J, Jobin J, Poirier P. Positive pleiotropic effects of HMG-CoA reductase inhibitor on vitiligo. Lipids Health Dis. 2004;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Vanderweil SG, Amano S, Ko WC, Richmond JM, Kelley M, Senna MM, et al. A double-blind, placebo-controlled, phase-II clinical trial to evaluate oral simvastatin as a treatment for vitiligo. J Am Acad Dermatol. 2017;76:150–1.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Iraji F, Banihashemi SH, Faghihi G, Shahmoradi Z, Tajmirriahi N, Jazi SBA. Comparison of betamethasone Valerate 0.1% cream twice daily plus oral simvastatin versus betamethasone Valerate 0.1% cream alone in the treatment of vitiligo patients. Adv Biomed Res. 2017;6:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lotti TM, Hercogova J, Schwartz RA, Tsampau D, Korobko I, Pietrzak A, et al. Treatments of vitiligo: what’s new at the horizon. Dermatol Ther. 2012;25(Suppl 1):S32–40.

    Article  PubMed  Google Scholar 

  111. Lim HW, Grimes PE, Agbai O, Hamzavi I, Henderson M, Haddican M, et al. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: a randomized multicenter trial. JAMA Dermatol. 2015;151:42–50.

    Article  PubMed  Google Scholar 

  112. Passeron T. Indications and limitations of afamelanotide for treating vitiligo. JAMA Dermatol. 2015;151:349–50.

    Article  PubMed  Google Scholar 

  113. Song X, Xu A, Pan W, Wallin B, Kivlin R, Lu S, et al. Minocycline protects melanocytes against H2O2-induced cell death via JNK and p38 MAPK pathways. Int J Mol Med. 2008;22:9–16.

    PubMed  Google Scholar 

  114. Singh A, Kanwar AJ, Parsad D, Mahajan R. Randomized controlled study to evaluate the effectiveness of dexamethasone oral minipulse therapy versus oral minocycline in patients with active vitiligo vulgaris. Indian J Dermatol Venereol Leprol. 2014;80:29–35.

    Article  PubMed  Google Scholar 

  115. Siadat AH, Zeinali N, Iraji F, Abtahi-Naeini B, Nilforoushzadeh MA, Jamshidi K, et al. Narrow-band ultraviolet B versus oral minocycline in treatment of unstable vitiligo: a prospective comparative trial. Dermatol Res Pract. 2014;2014:240856.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chou SY, Chou CK, Kuang TM, Hsu WM. Incidence and severity of iris pigmentation on latanoprost-treated glaucoma eyes. Eye (Lond). 2005;19:784–7.

    Article  CAS  Google Scholar 

  117. Anbar TS, El-Ammawi TS, Abdel-Rahman AT, Hanna MR. The effect of latanoprost on vitiligo: a preliminary comparative study. Int J Dermatol. 2015;54:587–93.

    Article  CAS  PubMed  Google Scholar 

  118. Korobko IV, Lomonosov KMA. Pilot comparative study of topical latanoprost and tacrolimus in combination with narrow-band ultraviolet B phototherapy and microneedling for the treatment of nonsegmental vitiligo. Dermatol Ther. 2016;29:437–41.

    Article  PubMed  Google Scholar 

  119. Tressler CS, Wiseman RL, Dombi TM, Jessen B, Huang K, Kwok KK, et al. Lack of evidence for a link between latanoprost use and malignant melanoma: an analysis of safety databases and a review of the literature. Br J Ophthalmol. 2011;95:1490–5.

    Article  PubMed  Google Scholar 

  120. Grimes PE. Bimatoprost 0.03% solution for the treatment of nonfacial vitiligo. J Drugs Dermatol. 2016;15:703–10.

    CAS  PubMed  Google Scholar 

  121. Sehgal VN. Role of tacrolimus (FK506) 0.1% ointment WW in vitiligo in children and imperatives of combine therapy with Trioxsalen and Silymarin suspension in progressive vitiligo. J Eur Acad Dermatol Venereol. 2009;23:1218–9.

    Article  CAS  PubMed  Google Scholar 

  122. Naini FF, Shooshtari AV, Ebrahimi B, Molaei R. The effect of pseudocatalase/superoxide dismutase in the treatment of vitiligo: a pilot study. J Res Pharm Pract. 2012;1:77–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Faas L, Venkatasamy R, Hider RC, Young AR, Soumyanath A. Vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br J Dermatol. 2008;158:941–50.

    Article  CAS  PubMed  Google Scholar 

  124. Asawanonda P, Klahan SO. Tetrahydrocurcuminoid cream plus targeted narrowband UVB phototherapy for vitiligo: a preliminary randomized controlled study. Photomed Laser Surg. 2010;28:679–84.

    Article  CAS  PubMed  Google Scholar 

  125. Karaguzel G, Sakarya NP, Bahadir S, Yaman S, Okten A. Vitamin D status and the effects of oral vitamin D treatment in children with vitiligo: a prospective study. Clin Nutr ESPEN. 2016;15:28–31.

    Article  PubMed  Google Scholar 

  126. Lotti T, Hercogova J, Fabrizi G. Advances in the treatment options for vitiligo: activated low-dose cytokines-based therapy. Expert Opin Pharmacother. 2015;16:2485–96.

    Article  CAS  PubMed  Google Scholar 

  127. Singh H, Kumaran MS, Bains A, Parsad DA. Randomized comparative study of oral corticosteroid Minipulse and low-dose oral methotrexate in the treatment of unstable vitiligo. Dermatology. 2015;231:286–90.

    Article  CAS  PubMed  Google Scholar 

  128. Radmanesh M, Saedi K. The efficacy of combined PUVA and low-dose azathioprine for early and enhanced repigmentation in vitiligo patients. J Dermatolog Treat. 2006;17:151–3.

    Article  CAS  PubMed  Google Scholar 

  129. Gupta AK, Ellis CN, Nickoloff BJ, Goldfarb MT, Ho VC, Rocher LL, et al. Oral cyclosporine in the treatment of inflammatory and noninflammatory dermatoses. A clinical and immunopathologic analysis. Arch Dermatol. 1990;126:339–50.

    Article  CAS  PubMed  Google Scholar 

  130. Dogra S, Kumar B. Repigmentation in vitiligo universalis: role of melanocyte density, disease duration, and melanocytic reservoir. Dermatol Online J. 2005;11:30.

    PubMed  Google Scholar 

  131. Open-label pilot study of abatacept for the treatment of vitiligo [Internet]. U.S. National Institutes of Health. 2016 [cited December 29, 2016]. Available from: https://clinicaltrials.gov/ct2/show/NCT02281058.

  132. Alghamdi KM, Khurrum H, Taieb A, Ezzedine K. Treatment of generalized vitiligo with anti-TNF-alpha agents. J Drugs Dermatol. 2012;11:534–9.

    CAS  PubMed  Google Scholar 

  133. Bin Dayel S, AlGhamdi K. Failure of alefacept in the treatment of vitiligo. J Drugs Dermatol. 2013;12:159–61.

    CAS  PubMed  Google Scholar 

  134. Ruiz-Arguelles A, Garcia-Carrasco M, Jimenez-Brito G, Sanchez-Sosa S, Perez-Romano B, Garces-Eisele J, et al. Treatment of vitiligo with a chimeric monoclonal antibody to CD20: a pilot study. Clin Exp Immunol. 2013;174:229–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mery-Bossard L, Bagny K, Chaby G, Khemis A, Maccari F, Marotte H, et al. New-onset vitiligo and progression of pre-existing vitiligo during treatment with biological agents in chronic inflammatory diseases. J Eur Acad Dermatol Venereol. 2017;31:181–6.

    Article  CAS  PubMed  Google Scholar 

  136. Wang X, McCoy J, Lotti T, Goren A. Topical cream delivers NB-UVB from sunlight for the treatment of vitiligo. Expert Opin Pharmacother. 2014;15:2623–7.

    Article  CAS  PubMed  Google Scholar 

  137. Mou Y, Jiang X, Du Y, Xue L. Intelligent bioengineering in vitiligo treatment: transdermal protein transduction of melanocyte-lineage-specific genes. Med Hypotheses. 2012;79:786–9.

    Article  CAS  PubMed  Google Scholar 

  138. Kumar R, Parsad D, Rani S, Bhardwaj S, Srivastav N. Glabrous lesional stem cells differentiated into functional melanocytes: new hope for repigmentation. J Eur Acad Dermatol Venereol. 2016;30:1555–60.

    Article  CAS  PubMed  Google Scholar 

  139. Tsuchiyama K, Wakao S, Kuroda Y, Ogura F, Nojima M, Sawaya N, et al. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts. J Invest Dermatol. 2013;133:2425–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Authors are indebted to Dr. Raihan Ashraf, MBBS and Dr. Rajsmita Bhattacharjee, MD for the English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Razmi T .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razmi T, M., Parsad, D. (2018). Recent Advances in Pathogenesis and Medical Management of Vitiligo. In: Kumarasinghe, P. (eds) Pigmentary Skin Disorders. Updates in Clinical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-70419-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70419-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70418-0

  • Online ISBN: 978-3-319-70419-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation