Riders on the Wind: The Aeroecology of Insect Migrants

  • Chapter
  • First Online:
Aeroecology

Abstract

Migratory flight close to the Earth’s surface (within the so-called flight boundary layer) occurs in some insects, but the vast majority of migrants ascend above this layer and harness the power of the wind for transport. The resulting displacements range from dispersive movements over a few tens of metres to seasonal migrations covering thousands of kilometres. In this chapter, we summarize knowledge of the use of the aerosphere by insects, focusing particularly on longer migrations, in relation to: the height and duration of flight, direction and speed of movement, seasonal and diel patterns, and responses to atmospheric conditions and phenomena. The seasonal mass movements have major ecological consequences in the invaded areas, and these are discussed briefly. We also highlight recent comparisons of insect movement strategies with those of flying vertebrates and mention interactions between these groups in the atmosphere. We conclude with some suggestions for the future development of these topics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achtemeier GL (1991) The use of insects as tracers for ‘clear-air’ boundary-layer studies by Doppler radar. J Atmos Ocean Technol 8:746–765

    Article  Google Scholar 

  • Achtemeier GL (1992) Grasshopper response to rapid vertical displacements within a ‘clear air’ boundary layer as observed by Doppler radar. Environ Entomol 21:921–938

    Article  Google Scholar 

  • Alerstam T, Chapman JW, Bäckman J et al (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proc R Soc B Biol Sci 278:3074–3080

    Article  Google Scholar 

  • Anderson RC (2009) Do dragonflies migrate across the western Indian Ocean? J Trop Ecol 25:347–348

    Article  Google Scholar 

  • Aralimarad P, Reynolds AM, Lim KS, Reynolds DR, Chapman JW (2011) Flight altitude selection increases orientation performance in high-flying nocturnal insect migrants. Anim Behav 82:1221–1225

    Article  Google Scholar 

  • Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344:1242552. https://doi.org/10.1126/science.1242552

    Article  CAS  PubMed  Google Scholar 

  • Bauer S, Chapman JW, Reynolds DR et al (2017) From agricultural benefits to aviation safety: realizing the potential of continent-wide radar networks. BioScience 67(10):912–918

    Article  Google Scholar 

  • Beerwinkle KR, Lopez JD, Witz JA, Schleider PG, Eyster RS, Lingren PD (1994) Seasonal radar and meteorological observations associated with nocturnal insect flight at altitudes to 900 meters. Environ Entomol 23:676–683

    Article  Google Scholar 

  • Bell JR, Aralimarad P, Lim K-S, Chapman JW (2013) Predicting insect migration density and speed in the daytime convective boundary layer. PLoS One 8(1):e54202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bluestein HB, Snyder JC, Thiem KJ, Wienhoff ZB, Reif D, Turner D (2014) Doppler-radar observations of a prefrontal wind-shift line in the Southern Plains of the U.S. Poster MES.P01 presented at ERAD2014: Eighth European Conference on Radar in Meteorology and Hydrology, 1–5 Sept 2014, Garmisch-Partenkirchen, Germany. DLR- Institut fĂ¼r Physik der Atmosphäre, Oberpfaffenhofen, Germany (Extended abstract)

    Google Scholar 

  • Boulanger Y, Fabry F, Kilambi A et al (2017) The use of weather surveillance radar and high-resolution three dimensional weather data to monitor a spruce budworm mass exodus flight. Agric For Meteorol 234:127–135

    Article  Google Scholar 

  • BrĂ©vault T, Achaleke J, SougnabĂ© SP, Vaissayre M (2008) Tracking pyrethroid resistance in the polyphagous bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) in the shifting landscape of a cotton growing area. Bull Entomol Res 98:565–573

    Article  PubMed  Google Scholar 

  • Browning KA (1981) Ingestion of insects by intense convective updraughts. Antenna 5:14–17

    Google Scholar 

  • Browning KA, Nicol JC, Marsham JH, Rogberg P, Norton EG (2011) Layers of insect echoes near a thunderstorm and implications for the interpretation of radar data in terms of airflow. Q J R Meteorol Soc 137:723–735

    Article  Google Scholar 

  • Campistron B (1975) Characteristic distributions of angel echoes in the lower atmosphere and their meteorological implications. Bound Layer Meteorol 9:411–426

    Article  Google Scholar 

  • Chandra AS, Kollias P, Giangrande SE, Klein SA (2010) Long-term observations of the convective boundary layer using insect radar returns at the SGP ARM climate research facility. J Climate 23:5699–5714

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Smith AD, Riley JR, Pedgley DE, Woiwod IP (2002a) High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: a study using radar, aerial netting and ground trap**. Ecol Entomol 27:641–650

    Article  Google Scholar 

  • Chapman JW, Smith AD, Woiwod IP, Reynolds DR, Riley JR (2002b) Development of vertical-looking radar technology for monitoring insect migration. Comput Electron Agric 35:95–110

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Smith AD, Smith ET, Woiwod IP (2004) An aerial netting study of insects migrating at high-altitude over England. Bull Entomol Res 94:123–136

    Google Scholar 

  • Chapman JW, Reynolds DR, Brooks SJ, Smith AD, Woiwod IP (2006) Seasonal variation in the migration strategies of the green lacewing Chrysoperla carnea species complex. Ecol Entomol 31:378–388

    Article  Google Scholar 

  • Chapman JW, Reynolds DR, Hill JK, Sivell D, Smith AD, Woiwod IP (2008a) A seasonal switch in compass orientation in a high-flying migrant moth. Curr Biol 18:R908–R909

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Reynolds DR, Mouritsen H et al (2008b) Wind selection and drift compensation optimize migratory pathways in a high-flying moth. Curr Biol 18:514–518

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Nesbit RL, Burgin LE, Reynolds DR, Smith AD, Middleton DR, Hill JK (2010) Flight orientation behaviors promote optimal migration trajectories in high-flying insects. Science 327:682–685

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Drake VA (2017) Insect migration. Elsevier, In Reference Module in Life Sciences. Oxford. http://www.sciencedirect.com/science/article/pii/B9780128096338012486

    Book  Google Scholar 

  • Chapman JW, Drake VA, Reynolds DR (2011a) Recent insights from radar studies of insect flight. Annu Rev Entomol 56:337–356

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Klaassen RHG, Drake VA et al (2011b) Animal orientation strategies for movement in flows. Curr Biol 21:R861–R870

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Bell JR, Burgin LE, Reynolds DR, Pettersson LB, Hill JK, Bonsall MB, Thomas JA (2012) Seasonal migration to high latitudes results in major reproductive benefits in an insect. Proc Natl Acad Sci USA 109(37):14924–14929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman JW, Lim KS, Reynolds DR (2013) The significance of midsummer movements of Autographa gamma: Implications for a mechanistic understanding of orientation behavior in a migrant moth. Curr Zool 59:360–370

    Article  Google Scholar 

  • Chapman JW, Nilsson C, Lim KS, Bäckman J, Reynolds DR, Alerstam T, Reynolds AM (2015a) Detection of flow direction in high-flying insect and songbird migrants. Curr Biol 25(17):R733–R752

    Article  CAS  Google Scholar 

  • Chapman JW, Reynolds DR, Wilson K (2015b) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18:287–302

    Article  PubMed  Google Scholar 

  • Chapman JW, Nilsson C, Lim KS, Bäckman J, Reynolds DR, Alerstam T (2016) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind. J Anim Ecol 85:115–124

    Article  PubMed  Google Scholar 

  • Chen R-L, Bao X-Z, Drake VA, Farrow RA, Wang S-Y, Sun Y-J, Zhai B-P (1989) Radar observations of the spring migration into northeastern China of the oriental armyworm moth, Mythimna separata and other insects. Ecol Entomol 14:149–162

    Article  Google Scholar 

  • Chilson PB, Bridge E, Frick WF, Chapman JW, Kelly JF (2012a) Radar aeroecology: exploring the movements of aerial fauna through radio-wave remote sensing. Biol Lett 8:698–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Chilson PB, Frick WF, Kelly JF, Howard KW, Larkin RP, Diehl RH, Westbrook JK, Kelly TA, Kunz TH (2012b) Partly cloudy with a chance of migration: weather, radars, and aeroecology. Bull Am Meteorol Soc 93:669–686

    Article  Google Scholar 

  • Cleveland CJ, Betke M, Federico P et al (2006) Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Front Ecol Environ 4:238–243

    Article  Google Scholar 

  • Contreras RF, Frasier SJ (2008) High-resolution observations of insects in the atmospheric boundary layer. J Atmos Ocean Technol 25:2176–2187

    Article  Google Scholar 

  • Deveson ED, Walker PW (2005) Not a one-way trip: historical distribution data for Australian plague locusts supports frequent seasonal exchange migrations. J Orthop Res 14:95–109

    Article  Google Scholar 

  • Dickerson AK, Shankles PG, Madhavan NM, Hu DL (2012) Mosquitoes survive raindrop collisions by virtue of their low mass. Proc Natl Acad Sci USA 109(25):9822–9827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingle H (2014) Migration: the biology of life on the move, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Dingle H, Drake VA (2007) What is migration? BioScience 57:113–121

    Article  Google Scholar 

  • Dokter AM, Liechti F, Stark H, Delobbe L, Tabary P, Holleman I (2011) Bird migration flight altitudes studied by a network of operational weather radars. J R Soc Interface 8:30–43

    Article  PubMed  Google Scholar 

  • Drake VA (1985) Solitary wave disturbances of the nocturnal boundary layer revealed by radar observations of migrating insects. Bound Layer Meteorol (3):269–286

    Google Scholar 

  • Drake VA (2014) Estimation of unbiased insect densities and density profiles with vertically pointing entomological radars. Int J Remote Sens 35(13):4630–4654

    Article  Google Scholar 

  • Drake VA, Farrow RA (1983) The nocturnal migration of the Australian plague locust, Chortoicetes terminifera (Walker) (Orthoptera: Acrididae): quantitative radar observations of a series of northward flights. Bull Entomol Res 73:567–585

    Article  Google Scholar 

  • Drake VA, Farrow RA (1985) A radar and aerial-trap** study of an early spring migration of moths (Lepidoptera) in inland New South Wales. Aust J Ecol:10223–10235

    Google Scholar 

  • Drake VA, Farrow RA (1988) The influence of atmospheric structure and motions on insect migration. Annu Rev Entomol 33:183–210

    Article  Google Scholar 

  • Drake VA, Gatehouse AG (eds) (1995) Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Drake VA, Reynolds DR (2012) Radar entomology: observing insect flight and migration. CABI, Wallingford

    Book  Google Scholar 

  • Drake VA, Wang HK (2013) Recognition and characterization of migratory movements of Australian plague locusts, Chortoicetes terminifera, with an insect monitoring radar. J Appl Remote Sens 7(1):075095, 17pp

    Google Scholar 

  • Drake VA, Helm KF, Readshaw JL, Reid DG (1981) Insect migration across Bass Strait during spring: a radar study. Bull. Entomol. Res.71:449–466

    Google Scholar 

  • Drake VA, Gregg PC, Harman IT, Wang H-K, Deveson ED, Hunter, DM, Rochester WA (2001) Characterizing insect migration systems in inland Australia with novel and traditional methodologies. In: Woiwod IP, Reynolds DR, Thomas CD (eds) Insect movement: mechanisms and consequences. CAB International, Wallingford, pp 207–233

    Google Scholar 

  • Dudley R (2000) The biomechanics of insect flight: form, function, evolution. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Farrow RA (1975) Offshore migration and the collapse of outbreaks of the Australian plague locust Chortoicetes terminifera Walk. in south-east Australia. Aust J Zool 234:569–595

    Article  Google Scholar 

  • Feng H-Q, Wu X-F, Wu B, Wu K-M (2009) Seasonal migration of Helicoverpa armigera (Lepidoptera: Noctuidae) over the Bohai Sea. J Econ Entomol 102:95–104

    Article  PubMed  Google Scholar 

  • Freeman B (2003) A fallout of black witches (Ascalapha odorata) associated with Hurricane Claudette. News Lepid Soc 43(3):71

    Google Scholar 

  • Geerts B, Miao Q (2005) The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J Atmos Ocean Technol 22:225–246

    Article  Google Scholar 

  • Geerts B, Damiani R, Haimov S (2006) Finescale vertical structure of a cold front as revealed by an airborne Doppler radar. Mon Weather Rev 134:251–271

    Article  Google Scholar 

  • Green K (2011) The transport of nutrients and energy into the Australian Snowy Mountains by migrating Bogong moths Agrotis infusa. Austral Ecol 36:25–34

    Article  Google Scholar 

  • Greenbank DO, Schaefer GW, Rainey RC (1980) Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem Entomol Soc Can 110:1–49

    Google Scholar 

  • Hardy KR, Ottersten H (1969) Radar investigations of convective patterns in the clear atmosphere. J Atmos Sci 26:666–672

    Article  Google Scholar 

  • Hein AM, Hou C, Gillooly JF (2012) Energetic and biomechanical constraints on animal migration distance. Ecol Lett 15:104–110

    Article  PubMed  Google Scholar 

  • Hobbs SE, Wolf WW (1989) An airborne radar technique for studying insect migration. Bull Entomol Res 79:693–704

    Article  Google Scholar 

  • Holdo RM, Holt RD, Sinclair ARE, Godley BJ, Thirgood S (2011) Migration impacts on communities and ecosystems: empirical evidence and theoretical insights. In: Milner-Gulland EJ, Fryxell JM, Sinclair ARE (eds) Animal migrations: a synthesis. Oxford University Press, Oxford, pp 131–143

    Google Scholar 

  • Hu G, Lim KS, Reynolds DR, Reynolds AM, Chapman JW (2016a) Wind-related orientation patterns in diurnal, crepuscular and nocturnal high-altitude insect migrants. Front Behav Neurosci 10: article 32, 8pp

    Google Scholar 

  • Hu G, Lim KS, Horvitz N, Clark SJ, Reynolds DR, Sapir N and Chapman JW (2016b) Mass seasonal bioflows of high-flying insect migrants. Science 354: 1584–1587

    Google Scholar 

  • Isard SA, Gage SH (2001) Flow of life in the atmosphere: an airscape approach to understanding invasive organisms. Michigan State University Press, East Lansing

    Google Scholar 

  • Irwin ME, Thresh JM (1988) Long range aerial dispersal of cereal aphids as virus vectors in North America. Philos Trans R Soc Lond B 321:421–446

    Article  Google Scholar 

  • Isard SA, Irwin ME, Hollinger SE (1990) Vertical distribution of aphids (Homoptera: Aphididae) in the planetary boundary layer. Environ Entomol 19:1473–1484

    Article  Google Scholar 

  • Isard SA, Kristovich DAR, Gage SH et al (2001) Atmospheric motion systems that influence the redistribution and accumulation of insects on the beaches of the Great Lakes in North America. Aerobiologia 17:275–291

    Article  Google Scholar 

  • Jeffries DL, Chapman J, Roy HE, Humphries S, Harrington R et al (2013) Characteristics and drivers of high-altitude ladybird flight: insights from vertical-looking entomological radar. PLoS One 8(12):e82278

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson CG (1969) Migration and dispersal of insects by flight. Methuen, London

    Google Scholar 

  • Johnson SJ (1995) Insect migration in North America: synoptic-scale transport in a highly seasonal environment. In: Drake VA, Gatehouse AG (eds) Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, pp 31–66

    Chapter  Google Scholar 

  • Joyce RJV (1983) Aerial transport of pests and pest outbreaks. EPPO Bull 13:111–119

    Article  Google Scholar 

  • Kelly JF, Horton KG (2016) Toward a predictive macrosystems framework for migration ecology. Glob Ecol Biogeogr 25(10):1159–1165. https://doi.org/10.1111/geb.12473

    Article  Google Scholar 

  • Kelly JF, Shipley JR, Chilson PB, Howard KW, Frick WF, Kunz TH (2012) Quantifying animal phenology in the continental scale using NEXRAD weather radars. Ecosphere 3:article 16. https://doi.org/10.1890/ES11-00257.1

    Article  Google Scholar 

  • Kelly JF, Bridge ES, Frick WF, Chilson PB (2013) Ecological energetics of an abundant aerial insectivore, the purple martin. PLoS One 8(9):e76616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy JS (1985) Migration: behavioral and ecological. In: Rankin MA (ed) Migration: mechanisms and adaptive significance. Contributions in Marine Science 27 (Supplement). Marine Science Institute, University of Texas at Austin, Port Aransas, TX, pp 5–26

    Google Scholar 

  • Klaassen RH, Hake M, Strandberg R et al (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83(1):176–184

    Article  PubMed  Google Scholar 

  • Knupp KR (2006) Observational analysis of a gust front to bore to solitary wave transition within an evolving nocturnal boundary layer. J Atmos Sci 63:2016–2035

    Article  Google Scholar 

  • Koch GJ (2006) Using a Doppler light detection and ranging (lidar) system to characterize an atmospheric thermal providing lift for soaring raptors. J Field Ornithol 77:315–318

    Article  Google Scholar 

  • Krauel JJ, Westbrook JK, McCracken GF (2015) Weather-driven dynamics in a dual-migrant system: moths and bats. J Anim Ecol 84:604–614

    Article  PubMed  Google Scholar 

  • Landry JS, Parrott L (2016) Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects? Ecosphere 7:e01265

    Article  Google Scholar 

  • Lang TJ, Rutledge SA, Stith JL (2004) Observations of quasi-symmetric echo patterns in clear air with the CSU-CHILL polarimetric radar. J Atmos Ocean Technol 21:1182–1189

    Article  Google Scholar 

  • Leskinen M, Markkula I, Koistinen J, Pylkkö P, Ooperi S, Siljamo P, Ojanen H, Raiskio S, Tiilikkala K (2011) Pest insect immigration warning by an atmospheric dispersion model, weather radars and traps. J Appl Entomol 135:55–67

    Article  Google Scholar 

  • Leskinen M, Rojas L, Mikkola K (2012) Weather radar observations of Underwing moth immigrations to Finland. Poster at ERAD 2012—the Seventh European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 24–29 June 2012. MĂ©tĂ©o France, Toulouse. http://www.meteo.fr/cic/meetings/2012/ERAD/extended_abs/NMUR_215_ext_abs.pdf

  • Lewis T, Taylor LR (1964) Diurnal periodicity of flight by insects. Trans R Entomol Soc Lond 116:393–479

    Article  Google Scholar 

  • Lothon M, Campistron B, Jacoby-Koaly S, BĂ©nech B, Lohou F, Girard-Ardhuin F (2002) Comparison of radar reflectivity and vertical velocity observed with a scannable C-band radar and two UHF profilers in the lower troposphere. J Atmos Ocean Technol 19:899–910

    Article  Google Scholar 

  • Lothon M, Campistron B, Chong M, Couvreux F, Guichard F, Rio C, Williams E (2011) Life cycle of a mesoscale circular gust front observed by a C-Band Doppler radar in West Africa. Mon Weather Rev 139:1370–1388

    Article  Google Scholar 

  • Luke EP, Kollias P, Johnson KL, Clothiaux EE (2008) A technique for the automatic detection of insect clutter in cloud radar returns. J Atmos Ocean Technol 25:1498–1513

    Article  Google Scholar 

  • McCracken GF, Gillam EH, Westbrook JK, Lee Y, Jensen M, Balsley B (2008) Brazilian free-tailed bats (Tadarida brasiliensis: Molossidae, Chiroptera) at high altitude: links to migratory insect populations. Integr Comp Biol 48:107–118

    Google Scholar 

  • McCracken GF, Westbrook JK, Brown VA et al (2012) Bats track and exploit changes in insect pest populations. PLoS One 7(8):e43839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNeil JN (1987) The true armyworm, Pseudaletia unipuncta—a victim of the pied piper or a seasonal migrant. Insect Sci Appl 8:591–597

    Google Scholar 

  • Melnikov V, Leskinen M, Koistinen J (2014a) Doppler velocities at orthogonal polarizations in radar echoes from insects and birds. IEEE Geosci Remote Sens Lett 11(3):592–596

    Article  Google Scholar 

  • Melnikov V, Zrnic D, Burgess D, Mansell E (2014b) Observations of hail cores of tornadic thunderstorms with three polarimetric radars. Presentation at 94th American Meteorological Society Annual Meeting, 2–6 Feb, 2014, Atlanta, 16pp. https://ams.confex.com/ams/94Annual/webprogram/Paper233038.html

  • Menu S, Gauthier G, Reed A (2005) Survival of young greater snow geese (Chen caerulescens atlantica) during fall migration. Auk 122:479–496

    Article  Google Scholar 

  • Mikkola K (1986) Direction of insect migrations in relation to the wind. In: Danthanarayana W (ed) Insect flight: dispersal and migration. Springer-Verlag, Berlin, pp 152–171

    Chapter  Google Scholar 

  • Ming J-G, ** H, Riley JR et al (1993) Autumn southward ‘return’ migration of the mosquito Culex tritaeniorhynchus in China. Med Vet Entomol 7:323–327

    Article  CAS  PubMed  Google Scholar 

  • Neumann HH, Mukammal EI (1981) Incidence of mesoscale convergence lines as input to spruce budworm control strategies. Int J Biometeorol 25:175–187

    Article  Google Scholar 

  • Nieminen M, Leskinen M, Helenius J (2000) Doppler radar detection of exceptional mass migration of aphids into Finland. Int J Biometeorol 44:172–181

    Article  CAS  PubMed  Google Scholar 

  • Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Bull Am Meteorol Soc 56:527–530

    Google Scholar 

  • Otuka A (2013) Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front Microbiol 4:article 309. https://doi.org/10.3389/fmicb.2013.00309.

    Article  PubMed  Google Scholar 

  • Otuka A, Dudhia J, Watanabe T, Furuno A (2005) A new trajectory analysis method for migratory planthoppers, Sogatella furcifera (HorvĂ¡th) (Homoptera: Delphacidae) and Nilaparvata lugens (StĂ¥l), using an advanced weather forecast model. Agric For Entomol 7:1–9

    Article  Google Scholar 

  • Otuka A, Matsumura M, Sanada-Morimura S, Takeuchi H, Watanabe T, Ohtsu R, Inoue H (2010) The 2008 overseas mass migration of the small brown planthopper, Laodelphax striatellus, and subsequent outbreak of rice stripe disease in western Japan. Appl Entomol Zool 45:259–266

    Article  Google Scholar 

  • Pair SD, Raulston JR, Westbrook JR, Wolf WW, Sparks AN, Schuster MF (1987) Development and production of corn earworm and fall armyworm in the Texas High Plains: evidence for the reverse fall migration. Southwestern Entomologist 12:89–99

    Google Scholar 

  • Pedgley DE (ed) (1981) Desert Locust forecasting manual, vols 1 and 2. Centre for Overseas Pest Research, London

    Google Scholar 

  • Pedgley DE (1982) Windborne pests and diseases: Meteorology of airborne organisms. Ellis Horwood, Chichester

    Google Scholar 

  • Pedgley DE, Reynolds DR, Tatchell GM (1995) Long-range insect migration in relation to climate and weather: Africa and Europe. In: Drake VA, Gatehouse AG (eds) Insect migration: tracking resources through space and time. Cambridge University Press, Cambridge, pp 3–29

    Chapter  Google Scholar 

  • Qi H, Jiang C, Zhang Y, Yang X, Cheng D (2014) Radar observations of the seasonal migration of brown planthopper (Nilaparvata lugens Stal) in Southern China. Bull Entomol Res 104:731–741

    Article  CAS  PubMed  Google Scholar 

  • Rainey RC (1989) Migration and meteorology: flight behaviour and the atmospheric environment of locusts and other migrant pests. Oxford University Press, Oxford

    Google Scholar 

  • Rennie SJ (2012) Doppler weather radar in Australia. CAWCR (Centre for Australian Weather and Climate Research) Technical Report 055. Bureau of Meteorology, Melbourne

    Google Scholar 

  • Rennie SJ (2014) Common orientation and layering of migrating insects in southeastern Australia observed with a Doppler weather radar. Meteorol Appl 21:218–229

    Article  Google Scholar 

  • Reynolds DR, Mukhopadhyay S, Riley JR, Das BK, Nath PS, Mandal SK (1999) Seasonal variation in the windborne movement of insect pests over northeast India. Int J Pest Manag 45:195–205

    Article  Google Scholar 

  • Reynolds DR, Chapman JW, Edwards AS, Smith AD, Wood CR, Barlow JF et al (2005) Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations. Bull Entomol Res 95:259–274

    Article  CAS  PubMed  Google Scholar 

  • Reynolds DR, Chapman JW, Harrington R (2006) The migration of insect vectors of plant and animal viruses. Adv Virus Res 67:453–517

    Article  CAS  PubMed  Google Scholar 

  • Reynolds DR, Smith AD, Chapman JW (2008) A radar study of emigratory flight and layer formation by insects at dawn over southern Britain. Bull Entomol Res 98:35–52

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AM, Reynolds DR, Riley JR (2009) Does a ‘turbophoretic’ effect account for layer concentrations of insects migrating in the stable night-time atmosphere? J R Soc Interface 6:87–95

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AM, Reynolds DR, Smith AD, Chapman JW (2010) A single wind-mediated mechanism explains high-altitude ‘non-goal oriented’ headings and layering of nocturnally migrating insects. Proc R Soc B Biol Sci 277:765–772

    Article  Google Scholar 

  • Reynolds DR, Reynolds AM, Chapman JW (2014) Non-volant modes of migration in terrestrial arthropods. Anim Migr 2:8–28

    Google Scholar 

  • Reynolds AM, Reynolds DR, Sane SP, Hu G, Chapman JW (2016) Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies. Philos Trans R Soc B: 371(1704):20150392

    Google Scholar 

  • Riley JR, Reynolds DR, Farmery MJ (1983) Observations of the flight behaviour of the armyworm moth, Spodoptera exempta, at an emergence site using radar and infra-red optical techniques. Ecol Entomol 8:395–418

    Article  Google Scholar 

  • Riley JR, Reynolds DR, Farrow RA (1987) The migration of Nilaparvata lugens (Stal) (Delphacidae) and other Hemiptera associated with rice during the dry season in the Philippines: a study using radar, visual observations, aerial netting and ground trap**. Bull Entomol Res 77:145–169

    Article  Google Scholar 

  • Riley JR, Cheng X-N, Zhang X-X, Reynolds DR, Xu G-M, Smith AD, Cheng J-Y, Bao A-D, Zhai B-P (1991) The long-distance migration of Nilaparvata lugens (Stal) (Delphacidae) in China: radar observations of mass return flight in the autumn. Ecol Entomol 16:471–489

    Article  Google Scholar 

  • Riley JR, Reynolds DR, Smith AD, Rosenberg LJ, Cheng X-N, Zhang X-X, Xu G-M, Cheng J-Y, Bao A-D, Zhai B-P, Wang H-K (1994) Observations on the autumn migration of Nilaparvata lugens (Homoptera: Delphacidae) and other pests in east central China. Bull Entomol Res 84:389–402

    Article  Google Scholar 

  • Riley JR, Reynolds DR, Smith AD, Edwards AS, Zhang X-X, Cheng X-N, Wang H-K, Cheng J-Y, Zhai B-P (1995) Observations of the autumn migration of the rice leaf roller Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and other moths in eastern China. Bull Entomol Res 85:397–414

    Article  Google Scholar 

  • Rose DJW, Page WW, Dewhurst CF et al (1985) Downwind migration of the African armyworm moth, Spodoptera exempta, studied by mark-and-recapture and by radar. Ecol Entomol 10:299–313

    Article  Google Scholar 

  • Rose DJW, Dewhurst CF, Page WW (2000) The African armyworm handbook: the status, biology, ecology, epidemiology and management of Spodoptera exempta (Lepidotera: Noctuidae), 2nd edn. Natural Resources Institute, Chatham

    Google Scholar 

  • Russell RW, Wilson JW (1996) Aerial plankton detected by radar. Nature 381:200–201

    Article  CAS  Google Scholar 

  • Russell RW, Wilson JW (1997) Radar-observed ‘fine lines’ in the optically clear boundary layer: reflectivity contribution from aerial plankton and its predators. Bound Layer Meteorol 82:235–262

    Article  Google Scholar 

  • Russell RW, Wilson JW (2001) Spatial dispersion of aerial plankton over east-central Florida: aeolian transport and coastline concentrations. Int J Remote Sens 22:2071–2082

    Article  Google Scholar 

  • Sauvageot H, Despaux G (1996) The clear-air coastal vespertine radar bands. Bull Am Meteorol Soc 77:673–681

    Article  Google Scholar 

  • Schaefer GW (1976) Radar observations of insect flight. In: Rainey RC (ed) Insect flight (Symposia of the Royal Entomological Society no. 7). Blackwell Scientific, Oxford, pp 157–197

    Google Scholar 

  • Scott KD, Lawrence N, Lange CL, Scott LJ, Wilkinson KS, Merritt MA, Miles M, Murray D, Graham GC (2005) Assessing moth migration and population structuring in Helicoverpa armigera (Lepidoptera: Noctuidae) at the regional scale: example from the Darling Downs, Australia. J Econ Entomol 98:2210–2219

    Article  PubMed  Google Scholar 

  • Shamoun-Baranes J, Alves JA, Bauer S et al. (2014) Continental-scale radar monitoring of the aerial movements of animals. Mov Ecol 2: article 9, 6pp

    Google Scholar 

  • Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 1:472–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sillett TS, Holmes RT (2002) Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308

    Article  Google Scholar 

  • Simpson JE (1994) Sea breeze and local winds. Cambridge University Press, Cambridge

    Google Scholar 

  • Simpson JE (1997) Gravity currents in the environment and the laboratory, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith AD, Reynolds DR, Riley JR (2000) The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England. Bull Entomol Res 90:265–277

    Article  CAS  PubMed  Google Scholar 

  • Ssymank A, Kearns CA, Pape T, Thompson FC (2008) Pollinating flies (Diptera): a major contribution to plant diversity and agricultural production. Biodiversity 9(1–2):86–89

    Article  Google Scholar 

  • Stefanescu C, AlarcĂ³n M, Ă€vila A (2007) Migration of the painted lady butterfly, Vanessa cardui, to north-eastern Spain is aided by African wind currents. J Anim Ecol 76:888–898

    Article  PubMed  Google Scholar 

  • Stefanescu C, PĂ¡ramo F, Ă…kesson S et al (2013) Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography 36:474–486

    Article  Google Scholar 

  • Stefanescu C, Soto DX, Talavera G, Vila R, Hobson KA (2016) Long-distance autumn migration across the Sahara by painted lady butterflies: exploiting resources in the tropical savannah. Biol Lett 12:20160561

    Article  PubMed  PubMed Central  Google Scholar 

  • Talavera G, Vila R (2017) Discovery of mass migration and breeding of the painted lady butterfly Vanessa cardui in the Sub-Sahara: the Europe–Africa migration revisited. Biol J Linn Soc 120:274–285

    Google Scholar 

  • Tanaka K, Matsumura M (2000) Development of virulence to resistant rice varieties in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae), immigrating into Japan. Appl Entomol Zool 35:529–533

    Article  Google Scholar 

  • Taylor LR (1974) Insect migration, flight periodicity and the boundary layer. J Anim Ecol 43:225–238

    Article  Google Scholar 

  • Taylor LR (1985) An international standard for the synoptic monitoring and dynamic map** of migrant pest aphid populations. In: MacKenzie DR, Barfield CS, Kennedy GC, Berger RD, Taranto DJ (eds) The movement and dispersal of agriculturally important biotic agents. Claitor’s Publishing Division, Baton Rouge, pp 337–380

    Google Scholar 

  • Tojo S, Ryuda M, Fukuda T, Matsunaga T, Choi D-R, Otuka A (2013) Overseas migration of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae), from May to mid-July in East Asia. Appl Entomol Zool 48:131–140

    Article  Google Scholar 

  • Tucker MR (1997) Satellite-derived rainstorm distribution as an aid to forecasting African armyworm outbreaks. Weather 52:204–212

    Article  Google Scholar 

  • Van Den Broeke MS (2013) Polarimetric Radar observations of biological scatterers in Hurricanes Irene (2011) and Sandy (2012). J Atmos Ocean Technol 30:2754–2767

    Article  Google Scholar 

  • Wainwright CE, Stepanian PM, Reynolds DR, Reynolds AM (2017) The movement of small insects in the convective boundary layer: linking patterns to processes. Sci Rep 7(1):article 5438

    Article  PubMed  Google Scholar 

  • Ward SA, Leather SR, Pickup J, Harrington R (1998) Mortality during dispersal and the cost of host-specificity in parasites: how many aphids find hosts? J Anim Ecol 67:763–773

    Article  Google Scholar 

  • Warrant E, Frost B, Green K, Mouritsen H, Dreyer D, Adden A, Brauburger K, Heinze S (2016) The Australian bogong moth Agrotis infusa: a long-distance nocturnal navigator. Front Behav Neurosci 10:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Weckwerth T, Horst TW, Wilson JW (1999) An observational study of the evolution of horizontal convective rolls. Mon Weather Rev 127:2160–2179

    Article  Google Scholar 

  • Weiss CC, Bluestein HB, Pazmany AL (2006) Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon Weather Rev 134:273–293

    Article  Google Scholar 

  • Westbrook JK (2008) Noctuid migration in Texas within the nocturnal aeroecological boundary layer. Integr Comp Biol 48:99–106

    Article  PubMed  Google Scholar 

  • Westbrook JK, Eyster RS (2017) Doppler weather radar detects emigratory flights of noctuids during a major pest outbreak. Remote Sensing Applications: Society and Environment 8:64–70

    Article  Google Scholar 

  • Westbrook JK, Eyster RS, Wolf WW (2014) WSR-88D Doppler radar detection of corn earworm moth migration. Int J Biometeorol 58:931–940

    Article  CAS  PubMed  Google Scholar 

  • Westbrook JK, Nagoshi RN, Meagher RL, Fleischer SJ, Jairam S (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267

    Article  CAS  PubMed  Google Scholar 

  • Wolf WW, Westbrook JK, Sparks AN (1986) Relationship between radar entomological measurements and atmospheric structure in south Texas during March and April 1982. In: Sparks AN (ed) Long-range migration of moths of agronomic importance to the United States and Canada: Specific examples of occurrence and synoptic weather patterns conducive to migration. ARS-43. United States Department of Agriculture, Agricultural Research Service, Washington, DC, pp 84–97

    Google Scholar 

  • Wood CR, O’Connor EJ, Hurley RA, Reynolds DR, Illingworth AJ (2009) Cloud-radar observations of insects in the UK convective boundary layer. Meteorol Appl 16:491–500

    Article  Google Scholar 

  • Wood CR, Clark SJ, Barlow JF, Chapman JW (2010) Layers of nocturnal insect migrants at high-altitude: the influence of atmospheric conditions on their formation. Agric For Entomol 12:113–121

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support provided by COST—European Cooperation in Science and Technology through the Action ES1305 ‘European Network for the Radar Surveillance of Animal Movement’ (ENRAM). JWC acknowledges support of Rothamsted Research, where he was employed during much of the drafting process; Rothamsted Research is a national institute of bioscience strategically funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don R. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reynolds, D.R., Chapman, J.W., Drake, V.A. (2017). Riders on the Wind: The Aeroecology of Insect Migrants. In: Chilson, P., Frick, W., Kelly, J., Liechti, F. (eds) Aeroecology. Springer, Cham. https://doi.org/10.1007/978-3-319-68576-2_7

Download citation

Publish with us

Policies and ethics

Navigation