Framework of Synchromodal Transportation Problems

  • Conference paper
  • First Online:
Computational Logistics (ICCL 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10572))

Included in the following conference series:

Abstract

Problem statements and solution methods in mathematical synchromodal transportation problems depend greatly on a set of model choices for which no rule of thumb exists. In this paper, a framework is introduced with which the model choices in synchromodal transportation problems can be classified, based on literature. This framework should help researchers and developers to find solution methodologies that are commonly used in their problem instance and to grasp characteristics of the models and cases in a compact way, enabling easy classification, comparison and insight in complexity. It is shown that this classification can help steer a modeller towards appropriate solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lean and green synchromodal. www.synchromodaliteit.nl/case/lean-and-green-barge/ (accessed February 27, 2017)

  2. Ontwikkeling van een synchromodale planningstool. http://www.synchromodaliteit.nl/case/ontwikkeling-van-een-synchromodale-planningstool/ (accessed January 04, 2017)

  3. Rotterdam – Moerdijk – Tilburg; een pilot met synchromodaal vervoer. www.synchromodaliteit.nl/case/rotterdam-moerdijk-tilburg-een-pilot-met-synchromodaal-vervoer/ (accessed February 27, 2017)

  4. Synchromodaily. www.synchromodaliteit.nl/case/synchromodaily/ (accessed February 27, 2017)

  5. Synchromodal control tower. www.synchromodaliteit.nl/case/synchromodale-control-tower/ (accessed February 27, 2017)

  6. Synchromodale cool port control. www.synchromodaliteit.nl/case/synchromodale-cool-port-control/ (accessed February 27, 2017)

  7. Bandeira, D., Becker, J., Borenstein, D.: A DSS for integrated distribution of empty and full containers. Decision Support Systems 47(4), 383–397 (2009)

    Article  Google Scholar 

  8. Behdani, B., Fan, Y., Wiegmans, B., Zuidwijk, R.: Multimodal schedule design for synchromodal freight transport systems. European Journal of Transport & Infrastructure Research 16(3), 424–444 (2016)

    Google Scholar 

  9. Bektas, T.: The multiple traveling salesman problem: an overview of formulations and solution procedures. Omega 34(3), 209–219 (2006)

    Article  MathSciNet  Google Scholar 

  10. Bock, S.: Real-time control of freight forwarder transportation networks by integrating multimodal transport chains. European Journal of Operational Research 200(3), 733–746 (2010)

    Article  MATH  Google Scholar 

  11. Caris, A., Macharis, C., Janssens, G.: Corridor network design in hinterland transportation systems. Flexible Services and Manufacturing Journal 24(3), 294–319 (2012)

    Article  Google Scholar 

  12. Chen, L., Miller-Hooks, E.: Resilience: an indicator of recovery capability in intermodal freight transport. Transportation Science 46(1), 109–123 (2012)

    Article  Google Scholar 

  13. Crainic, T.: Service network design in freight transportation. European Journal of Operational Research 122(2), 272–288 (2000)

    Article  MATH  Google Scholar 

  14. Crainic, T., Gendreau, M., Dejax, P.: Dynamic and stochastic models for the allocation of empty containers. Operations Research 41(1), 102–126 (1993)

    Article  MATH  Google Scholar 

  15. Di Francesco, M., Lai, M., Zuddas, P.: Maritime repositioning of empty containers under uncertain port disruptions. Computers & Industrial Engineering 64(3), 827–837 (2013)

    Article  Google Scholar 

  16. Erera, A., Morales, J., Savelsbergh, M.: Global intermodal tank container management for the chemical industry. Transportation Research Part E: Logistics and Transportation Review 41(6), 551–566 (2005)

    Article  Google Scholar 

  17. Goel, A.: The value of in-transit visibility for supply chains with multiple modes of transport. International Journal of Logistics: Research and Applications 13(6), 475–492 (2010)

    Article  Google Scholar 

  18. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5, 287–326 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, M., Hu, X., Zhang, L.: A decision method for disruption management problems in intermodal freight transport. In: Intelligent Decision Technologies, pp. 13–21. Springer (2011)

    Google Scholar 

  20. Kendall, D.: Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded markov chain. The Annals of Mathematical Statistics, 338–354 (1953)

    Google Scholar 

  21. Kooiman, K., Phillipson, F., Sangers, A.: Planning inland container ship**: a stochastic assignment problem. In: Wittevrongel, S., Phung-Duc, T. (eds.) ASMTA 2016. LNCS, vol. 9845, pp. 179–192. Springer, Cham (2016). doi:10.1007/978-3-319-43904-4_13

    Chapter  Google Scholar 

  22. Laporte, G.: The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research 59(3), 345–358 (1992)

    Article  MATH  Google Scholar 

  23. Li, L.: Coordinated Model Predictive Control of Synchromodal Freight Transport Systems. Ph.D. thesis, Delft University of Technology TRAIL thesis series (2016)

    Google Scholar 

  24. Li, L., Negenborn, R.R., De Schutter, B.: Distributed model predictive control for cooperative synchromodal freight transport. Transport. Res. Part E (2016). http://www.sciencedirect.com/science/article/pii/S1366554515303069

  25. Lin, C., Choy, K.L., Ho, G.T., Chung, S.H., Lam, H.: Survey of green vehicle routing problem: past and future trends. Expert Systems with Applications 41(4), 1118–1138 (2014)

    Article  Google Scholar 

  26. Lin, X., Negenborn, R.R., Lodewijks, G.: Towards quality-aware control of perishable goods in synchromodal transport networks. IFAC-PapersOnLine 49(16), 132–137 (2016)

    Article  Google Scholar 

  27. Mes, M., Iacob, M.: Synchromodal transport planning at a logistics service provider. In: Logistics and Supply Chain Innovation, pp. 23–36. Springer (2016)

    Google Scholar 

  28. Miller-Hooks, E., Zhang, X., Faturechi, R.: Measuring and maximizing resilience of freight transportation networks. Computers & Operations Research 39(7), 1633–1643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Min, H.: International intermodal choices via chance-constrained goal programming. Transportation Research Part A: General 25(6), 351–362 (1991)

    Article  Google Scholar 

  30. Nabais, J.L., Negenborn, R.R., Benitez, R.B.C., Botto, M.A.: A constrained MPC heuristic to achieve a desired transport modal split at intermodal hubs. In: 2013 16th International IEEE Conference on Intelligent Transportation Systems-(ITSC), pp. 714–719. IEEE (2013)

    Google Scholar 

  31. Pérez Rivera, A., Mes, M.: Service and transfer selection for freights in a synchromodal network. In: Paias, A., Ruthmair, M., Voß, S. (eds.) ICCL 2016. LNCS, vol. 9855, pp. 227–242. Springer, Cham (2016). doi:10.1007/978-3-319-44896-1_15

    Chapter  Google Scholar 

  32. Pfoser, S., Treiblmaier, H., Schauer, O.: Critical success factors of synchromodality: Results from a case study and literature review. Transportation Research Procedia 14, 1463–1471 (2016)

    Article  Google Scholar 

  33. Phillipson, F.: Creating timetables in case for disturbances in simulation of railroad traffic. In: Proceedings of the 45th International Conference on Computers & Industrial Engineering (CIE45), pp. 1–8 (2015)

    Google Scholar 

  34. Phillipson, F.: A thought on optimisation, complexity and self-organisation in synchromodal logistics. Tech. rep., TNO, The Netherlands (2017)

    Google Scholar 

  35. Pleszko, J.: Multi-variant configurations of supply chains in the context of synchromodal transport. LogForum 8(4) (2012)

    Google Scholar 

  36. Puettmann, C., Stadtler, H.: A collaborative planning approach for intermodal freight transportation. OR Spectrum 32(3), 809–830 (2010)

    Article  MATH  Google Scholar 

  37. Riessen, B.V., Negenborn, R.R., Dekker, R., Lodewijks, G.: Service network design for an intermodal container network with flexible due dates/times and the possibility of using subcontracted transport. International Journal of Ship** and Transport Logistics 7(4), 457–478 (2015)

    Article  Google Scholar 

  38. Song, D., Dong, J.: Cargo routing and empty container repositioning in multiple ship** service routes. Transportation Research Part B: Methodological 46(10), 1556–1575 (2012)

    Article  Google Scholar 

  39. SteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T., Raoufi, R.: Multimodal freight transportation planning: A literature review. European Journal of Operational Research 233(1), 1–15 (2014)

    Article  MATH  Google Scholar 

  40. Tavasszy, L., Behdani, B., Konings, R.: Intermodality and synchromodality. SSRN.com (2015)

    Google Scholar 

  41. Theys, C., Dullaert, W., Notteboom, T.: Analyzing cooperative networks in intermodal transportation: a game-theoretic approach. In: Nectar Logistics and Freight Cluster Meeting, Delft, The Netherlands, pp. 1–37 (2008)

    Google Scholar 

  42. Topaloglu, H.: A parallelizable dynamic fleet management model with random travel times. European Journal of Operational Research 175(2), 782–805 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Topaloglu, H.: A parallelizable and approximate dynamic programming-based dynamic fleet management model with random travel times and multiple vehicle types. In: Dynamic Fleet Management, pp. 65–93. Springer (2007)

    Google Scholar 

  44. Topaloglu, H., Powell, W.: A distributed decision-making structure for dynamic resource allocation using nonlinear functional approximations. Operations Research 53(2), 281–297 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Topaloglu, H., Powell, W.: Dynamic-programming approximations for stochastic time-staged integer multicommodity-flow problems. INFORMS Journal on Computing 18(1), 31–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Topaloglu, H., Powell, W.: Sensitivity analysis of a dynamic fleet management model using approximate dynamic programming. Operations Research 55(2), 319–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Van Binsbergen, A., Konings, R., Tavasszy, L., Van Duin, J.: Innovations in intermodal freight transport: lessons from europe. In: Papers of the 93th Annual Meeting of the Transportation Research Board, Washington (USA), January 12–16, 2014. revised paper. TRB

    Google Scholar 

  48. Van Riessen, B., Negenborn, R.R., Dekker, R.: Synchromodal container transportation: An overview of current topics and research opportunities. Computational Logistics 9335, 386–397 (2015)

    Article  Google Scholar 

  49. Vinke, P.: Dynamic consolidation decisions in a synchromodal environment: Improving the synchromodal control tower. Master’s thesis, University of Twente (2016)

    Google Scholar 

  50. Xu, Y., Cao, C., Jia, B., Zang, G.: Model and algorithm for container allocation problem with random freight demands in synchromodal transportation. Mathematical Problems in Engineering 2015 (2015)

    Google Scholar 

  51. Zhang, M., Pel, A.: Synchromodal hinterland freight transport: model study for the port of Rotterdam. Journal of Transport Geography 52, 1–10 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Phillipson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

De Juncker, M.A.M., Huizing, D., del Vecchyo, M.R.O., Phillipson, F., Sangers, A. (2017). Framework of Synchromodal Transportation Problems. In: Bektaş, T., Coniglio, S., Martinez-Sykora, A., Voß, S. (eds) Computational Logistics. ICCL 2017. Lecture Notes in Computer Science(), vol 10572. Springer, Cham. https://doi.org/10.1007/978-3-319-68496-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68496-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68495-6

  • Online ISBN: 978-3-319-68496-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation