Iron Pyrite (FeS2): Sustainable Photovoltaic Material

  • Chapter
  • First Online:
Micro and Nanomanufacturing Volume II
  • 1977 Accesses

Abstract

Fool’s gold or Iron pyrite (FeS2) is a semiconductor comprised of earth-abundant elements that has the potential to be a low cost photovoltaic material with comparatively low toxicity. Despite its promise, photovoltaic modules containing FeS2 continue to show small photo-voltages which have limited power conversion efficiencies to around 3%. Bandgap engineering of pyrite by do** may help in increasing power conversion efficiency by increasing the portion of the solar spectrum absorbed. This may lead to the prospect of tandem device architectures that utilise pyrite as an intrinsic semiconductor

This chapter shadows the characteristics of iron pyrite as promising photovoltaic material. It elaborates the properties of iron pyrite (FeS2) and transition metal doped iron pyrite thin films fabricated by various physical and chemical deposition methods primarily via aerosol-assisted chemical vapour deposition (AACVD). At the end, this chapter provides a brief summary for the current status of pyrite to be used as cheap inexpensive photovoltaic material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rickard D, Luther GW (2007) Chem Rev 107:514–562

    Article  Google Scholar 

  2. Wadia C, Alivisatos AP, Kammen DM (2009) Environ Sci Technol 43:2072–2077

    Article  Google Scholar 

  3. Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides, vol 493. Cambridge University Press, Cambridge

    Google Scholar 

  4. Schena T, Bihlmayer G, Blügel S (2013) Phys Rev B 88:235203

    Article  Google Scholar 

  5. Ennaoui A, Fiechter S, Jaegermann W, Tributsch H (1986) J Electrochem Soc 133:97–106

    Article  Google Scholar 

  6. Kuvandikov O, Shakarov KO, Shodiev Z, Rabbimova G (2007) J Commun Technol Electron 52:1062–1064

    Article  Google Scholar 

  7. Ho C, Huang Y, Tiong K (2006) J Alloy Compd 422:321–327

    Article  Google Scholar 

  8. Pridmore D, Shuey R (1976) Am Mineral 61:248–259

    Google Scholar 

  9. Ferrer I, Ares J, Sanchez C (2003) Sol Energy Mater Sol Cells 76:183–188

    Article  Google Scholar 

  10. Ennaoui A, Fiechter S, Pettenkofer C, Alonso-Vante N, Büker K, Bronold M, Höpfner C, Tributsch H (1993) Sol Energy Mater Sol Cells 29:289–370

    Article  Google Scholar 

  11. Abraitis P, Pattrick R, Vaughan D (2004) Int J Miner Process 74:41–59

    Article  Google Scholar 

  12. Birkholz M, Fiechter S, Hartmann A, Tributsch H (1991) Phys Rev B 43:11926

    Article  Google Scholar 

  13. Li Y-Q, Chen J-H, Chen Y, Guo J (2011) Trans Nonferrous Met Soc Chin 21:1887–1895

    Article  Google Scholar 

  14. Sun R, Chan M, Kang S, Ceder G (2011) Phys Rev B 84:035212

    Article  Google Scholar 

  15. Ferrer I, Nevskaia D, De las Heras C, Sanchez C (1990) Solid State Commun 74:913–916

    Article  Google Scholar 

  16. Meng L, Liu YH, Tian L (2003) J Cryst Growth 253:530–538

    Article  Google Scholar 

  17. Luan Z, Huang L, Wang F, Meng L (2011) Appl Surf Sci 258:1505–1509

    Article  Google Scholar 

  18. Yonemoto BT, Hutchings GS, Jiao F (2014) J Am Chem Soc 136:8895–8898

    Article  Google Scholar 

  19. Smestad G, Ennaoui A, Fiechter S, Tributsch H, Hofmann W, Birkholz M, Kautek W (1990) Solar Energy Mater 20:149–165

    Article  Google Scholar 

  20. Wang X, Wang G, Chen J, Zhu X, Tian J, Jiang C, Zhang Y, Liu X, Wang R (2013) Mater Lett 110:144–147

    Article  Google Scholar 

  21. Liu H, Chi D (2012) J Vac Sci Technol A 30:04D102

    Article  Google Scholar 

  22. Mazón-Montijo D, Nair M, Nair P (2013) ECS J Solid State Sci Technol 2:P465–P470

    Article  Google Scholar 

  23. Pimenta G, Kautek W (1994) Thin Solid Films 238:213–217

    Article  Google Scholar 

  24. Bausch S, Sailer B, Keppner H, Willeke G, Bucher E, Frommeyer G (1990) Appl Phys Lett 57:25–27

    Article  Google Scholar 

  25. Teo M, Kulinich S, Plaksin O, Zhu A (2010) Chem A Eur J 114:4173–4180

    Google Scholar 

  26. Umehara M, Takeda Y, Azuma H, Motohiro T (2012) Jpn J Appl Phys 51:02BP10

    Article  Google Scholar 

  27. Baruth A, Manno M, Narasimhan D, Shankar A, Zhang X, Johnson M, Aydil ES, Leighton C (2012) J Appl Phys 112:054328

    Article  Google Scholar 

  28. Bessergenev V, Pereira R, Botelho do Rego A (2007) Surf Coat Technol 201:9141–9145

    Article  Google Scholar 

  29. Adusumilli SP, Dhakal TP, Westgate CR (2012) Synthesis of iron pyrite film through low temperature atmospheric pressure chemical vapor deposition. In: MRS Proceedings. Cambridge University Press, Cambridge

    Google Scholar 

  30. Malik MA, Revaprasadu N, Ramasamy K (2012) Nanoscience: nanostructures through chemistry, vol 1. RSC Publishing, Cambridge, UK, p 29

    Google Scholar 

  31. De las Heras C, Ferrer I, Sanchez C (1993) J Appl Phys 74:4551–4556

    Article  Google Scholar 

  32. Clayton A, Irvine S, Barrioz V, Brooks W, Zoppi G, Forbes I, Rogers KD, Lane DW, Hutchings K, Roncallo S (2011) Thin Solid Films 519:7360–7363

    Article  Google Scholar 

  33. Luan Z, Wang Y, Wang F, Huang L, Meng L (2011) Thin Solid Films 519:7830–7835

    Article  Google Scholar 

  34. Vahidi M, Lehner S, Buseck P, Newman N (2013) Acta Mater 61:7392–7398

    Article  Google Scholar 

  35. Meester B, Reijnen L, Goossens A, Schoonman J (2000) Chem Vapor Depos 6:121–128

    Article  Google Scholar 

  36. Bronold M, Kubala S, Pettenkofer C, Jaegermann W (1997) Thin Solid Films 304:178–182

    Article  Google Scholar 

  37. Berry N, Cheng M, Perkins CL, Limpinsel M, Hemminger JC, Law M (2012) Adv Energy Mater 2:1124–1135

    Article  Google Scholar 

  38. Samad L, Cabán-Acevedo M, Shearer MJ, Park K, Hamers RJ, ** S (2015) Chem Mater 27:3108–3114

    Article  Google Scholar 

  39. Yamamoto A, Nakamura M, Seki A, Li E, Hashimoto A, Nakamura S (2003) Sol Energy Mater Sol Cells 75:451–456

    Article  Google Scholar 

  40. Moon DG, Cho A, Park JH, Ahn S, Kwon H, Cho YS, Ahn S (2014) J Mater Chem A 2:17779–17786

    Article  Google Scholar 

  41. Zhang X, Scott T, Socha T, Nielsen D, Manno M, Johnson M, Yan Y, Losovyj Y, Dowben P, Aydil ES (2015) ACS Appl Mater Interfaces 7:14130–14139

    Article  Google Scholar 

  42. Akhtar M, Abdelhady AL, Azad MM, O’Brien P (2012) J Cryst Growth 346:106–112

    Article  Google Scholar 

  43. Khalid S, Ahmed E, Azad MM, Lewis DJ, Abu BS, Khan Y, O’Brien P (2015) New J Chem 39:1013–1021

    Article  Google Scholar 

  44. Luan Z, Wang F, Yao D, Huang L, Meng L (2011) Mater Res Bull 46:1577–1581

    Article  Google Scholar 

  45. Clamagirand J, Ares J, Ferrer I, Sánchez C (2012) Near room temperature power factor of metal sulfides films. In: 9th European conference on thermoelectrics: ECT2011. American Institute of Physics

    Google Scholar 

  46. Pascual A, Yoda S, Barawi M, Clamagirand JM, Ares JR, Ferrer IJ, Sánchez C (2014) J Phys Chem C 118:26440–26446

    Article  Google Scholar 

  47. Sentman CD, O’Brien M, Wolden CA (2013) J Vac Sci Technol A 32:021201

    Article  Google Scholar 

  48. Layek A, Middya S, Ray PP (2013) J Renew Sustain Energy 5:031601

    Article  Google Scholar 

  49. Sajimol AM, Anand PB, Anilkumar KM, Jayalekshmi S (2013) Polym Int 62:670–675

    Article  Google Scholar 

  50. Yokoyama D, Namiki K, Yamada Y (2006) J Radioanal Nucl Chem 268:283–288

    Article  Google Scholar 

  51. Henda R, Al-Shareeda O, McDonald A, Pratt A (2012) Appl Phys A 108:967–974

    Article  Google Scholar 

  52. Steinhagen C, Harvey TB, Stolle CJ, Harris J, Korgel BA (2012) J Phys Chem Lett 3:2352–2356

    Article  Google Scholar 

  53. Zhu L, Richardson BJ, Yu Q (2015) Chem Mater 27:3516–3525

    Article  Google Scholar 

  54. Lin Y-Y, Wang D-Y, Yen H-C, Chen H-L, Chen C-C, Chen C-M, Tang C-Y, Chen C-W (2009) Nanotechnology 20:405207

    Article  Google Scholar 

  55. Bi Y, Yuan Y, Exstrom CL, Darveau SA, Huang J (2011) Nano Lett 11:4953–4957

    Article  Google Scholar 

  56. Jasion D, Barforoush JM, Qiao Q, Zhu Y, Ren S, Leonard KC (2015) ACS Catal 5:6653–6657

    Article  Google Scholar 

  57. Li T, Liu H, Wu Z, Liu Y, Guo Z, Zhang H (2016) Nanoscale 8:11792–11796

    Article  Google Scholar 

  58. O’Brien P, Otway DJ, Park J-H (1999) Iron sulfide (FeS2) thin films from single-source precursors by aerosol-assisted chemical vapor deposition (AACVD). In: MRS proceedings. Cambridge University Press, Cambridge

    Google Scholar 

  59. Ramasamy K, Malik MA, Helliwell M, Tuna F, O’Brien P (2010) Inorg Chem 49:8495–8503

    Article  Google Scholar 

  60. Akhtar M, Akhter J, Malik MA, O’Brien P, Tuna F, Raftery J, Helliwell M (2011) J Mater Chem 21:9737–9745

    Article  Google Scholar 

  61. Middya S, Layek A, Dey A, Ray PP (2014) J Mater Sci Technol 30:770–775

    Article  Google Scholar 

  62. Wang M, **ng C, Cao K, Zhang L, Liu J, Meng L (2014) J Mater Chem A 2:9496–9505

    Article  Google Scholar 

  63. Hu J, Zhang Y, Law M, Wu R (2012) J Am Chem Soc 134:13216–13219

    Article  Google Scholar 

  64. Jiao J, Chen L, Kuang D, Gao W, Feng H, **a J (2011) RSC Adv 1:255–261

    Article  Google Scholar 

  65. Long F, He J, Zhang M, Wu X, Mo S, Zou Z, Zhou Y (2015) J Mater Sci 50:1848–1854

    Article  Google Scholar 

  66. Golsheikh AM, Huang N, Lim H, Chia C, Harrison I, Muhamad M (2013) Chem Eng J 218:276–284

    Article  Google Scholar 

  67. Dubey A, Singh SK, Tulachan B, Roy M, Srivastava G, Philip D, Sarkar S, Das M (2016) RSC Adv 6:16859–16867

    Article  Google Scholar 

  68. Zhu Y, Fan X, Suo L, Luo C, Gao T, Wang C (2016) ACS Nano 10:1529–1538

    Article  Google Scholar 

  69. Buonsanti R, Milliron DJ (2013) Chem Mater 25:1305–1317

    Article  Google Scholar 

  70. Gao M-R, Xu Y-F, Jiang J, Yu S-H (2013) Chem Soc Rev 42:2986–3017

    Article  Google Scholar 

  71. Deng M, Shen S, Zhang Y, Xu H, Wang Q (2014) New J Chem 38:77–83

    Article  Google Scholar 

  72. Sun R, Ceder G (2011) Phys Rev B 84:245211

    Article  Google Scholar 

  73. Smestad G, Da Silva A, Tributsch H, Fiechter S, Kunst M, Meziani N, Birkholz M (1989) Sol Energy Mater 18:299–313

    Article  Google Scholar 

  74. Liu L, Yuan Z, Qiu C, Liu J (2013) Solid State Ion 241:25–29

    Article  Google Scholar 

  75. Díaz-Chao P, Ares J, Ferrer I, Sánchez C (2013) J Mater Sci 48:4914–4924

    Article  Google Scholar 

  76. Liu X, Kim H-S, Hong J-H, Xu Z, **ao H, Ahn I-S, Kim K-W (2014) Powder Technol 256:545–552

    Article  Google Scholar 

  77. Ding W, Wang X, Peng H, Peng Z, Dong B (2013) Mater Res Bull 48:4704–4710

    Article  Google Scholar 

  78. Büker K, Fiechter S, Eyert V, Tributsch H (1999) J Electrochem Soc 146:261–265

    Article  Google Scholar 

  79. Ferrer IJ, Ares J, Sánchez C (2001) Solid State Phenomena 80:281–286

    Article  Google Scholar 

  80. Diener A, Neumann T, Kramar U, Schild D (2012) J Contam Hydrol 133:30–39

    Article  Google Scholar 

  81. **a J, Lu X, Gao W, Jiao J, Feng H, Chen L (2011) Electrochim Acta 56:6932–6939

    Article  Google Scholar 

  82. Blenk O, Bucher E, Willeke G (1993) Appl Phys Lett 62:2093–2095

    Article  Google Scholar 

  83. Lehner S, Savage K, Ayers J (2006) J Cryst Growth 286:306–317

    Article  Google Scholar 

  84. Schieck R, Hartmann A, Fiechter S, Könenkamp R, Wetzel H (1990) J Mater Res 5:1567–1572

    Article  Google Scholar 

  85. Tomm Y, Schieck R, Ellmer K, Fiechter S (1995) J Cryst Growth 146:271–276

    Article  Google Scholar 

  86. De las Heras C, Bausá L (1997) J Phys Condens Mat 9:9483

    Article  Google Scholar 

  87. Mao B, Dong Q, **ao Z, Exstrom CL, Darveau SA, Webber TE, Lund BD, Huang H, Kang Z, Huang J (2013) J Mater Chem A 1:12060–12065

    Article  Google Scholar 

  88. Bouchard R (1968) Mater Res Bull 3:563–570

    Article  Google Scholar 

  89. Ogawa S, Teranishi T (1972) Phys Lett A 42:147–148

    Article  Google Scholar 

  90. Jarrett H, Cloud W, Bouchard R, Butler S, Frederick C, Gillson J (1968) Phys Rev Lett 21:617

    Article  Google Scholar 

  91. Guo S, Young DP, Macaluso RT, Browne DA, Henderson NL, Chan JY, Henry LL, DiTusa JF (2008) Phys Rev Lett 100:017209

    Article  Google Scholar 

  92. Zhang X, Wu N, Manno M, Leighton C, Vescovo E, Dowben P (2012) J Phys Condens Mat 25:012001

    Article  Google Scholar 

  93. Kaster BC (2011) Magnetic properties of Co1–x Fe x S2. Miami University

    Google Scholar 

  94. Guo S, Young D, Macaluso R, Browne D, Henderson N, Chan J, Henry L, DiTusa J (2010) Phys Rev B 81:144423

    Article  Google Scholar 

  95. Utfeld C, Giblin S, Taylor J, Duffy J, Shenton-Taylor C, Laverock J, Dugdale S, Manno M, Leighton C, Itou M (2009) Phys Rev Lett 103:226403

    Article  Google Scholar 

  96. Manno M, Frakie R, Leighton C (2009) J Appl Phys 105:093912

    Article  Google Scholar 

  97. Chandra U, Zuburtikudis I, Parthasarathy G, Sreedhar B (2014) Phase Transitions 87:477–490

    Article  Google Scholar 

  98. Leighton C, Manno M, Cady A, Freeland J, Wang L, Umemoto K, Wentzcovitch R, Chen T, Chien C, Kuhns P (2007) J Phys Condens Mat 19:315219

    Article  Google Scholar 

  99. Guo S (2006) Magnetic, thermodynamic and transport properties of the magnetic semiconductor Fe1–x Co x S2 and superconducting LaSb2. Louisiana State University

    Google Scholar 

  100. Han J-T, Huang Y-H, Huang W (2006) Mater Lett 60:1805–1808

    Article  Google Scholar 

  101. Wang L, Chen T, Chien C, Checkelsky J, Eckert J, Dahlberg E, Umemoto K, Wentzcovitch R, Leighton C (2006) Phys Rev B 73:144402

    Article  Google Scholar 

  102. Mazin I (2000) Appl Phys Lett 77:3000–3002

    Article  Google Scholar 

  103. Guo S, Young D, Macaluso R, Browne D, Henderson N, Chan J, Henry L, DiTusa J (2010) Phys Rev B 81:144424

    Article  Google Scholar 

  104. Umemoto K, Wentzcovitch RM, Wang L, Leighton C (2006) Phys Stat Solidi B 243:2117–2121

    Article  Google Scholar 

  105. Oertel J, Ellmer K, Bohne W, Röhrich J, Tributsch H (1999) J Cryst Growth 198:1205–1210

    Article  Google Scholar 

  106. Thomas B, Ellmer K, Bohne W, Röhrich J, Kunst M, Tributsch H (1999) Solid State Commun 111:235–240

    Article  Google Scholar 

  107. Díaz-Chao P, Ferrer I, Sánchez C (2008) Thin Solid Films 516:7116–7119

    Article  Google Scholar 

  108. Clamagirand JM, Ares JR, Flores E, Diaz-Chao P, Leardini F, Ferrer IJ, Sánchez C (2016) Thin Solid Films 600:19–24

    Article  Google Scholar 

  109. Ferrer I, de la Heras C, Sanchez C (1995) J Phys Condens Mat 7:2115

    Article  Google Scholar 

  110. Ho C, Huang C, Wu C (2004) J Cryst Growth 270:535–541

    Article  Google Scholar 

  111. Lehner S, Newman N, Van Schilfgaarde M, Bandyopadhyay S, Savage K, Buseck P (2012) J Appl Phys 111:083717

    Article  Google Scholar 

  112. Ferrer I, De las Heras C, Sánchez C (1993) Appl Surf Sci 70:588–592

    Article  Google Scholar 

  113. Ferrer I, Caballero F, De las Heras C, Sánchez C (1994) Solid State Commun 89:349–352

    Article  Google Scholar 

  114. Fan JL, Lu SK (2013) First-principles calculation of electronic structure of the Cu-doped Pyrite FeS2. Adv Mater Res 652–654:590–593

    Article  Google Scholar 

  115. Pearce CI, Pattrick RA, Vaughan DJ (2006) Rev Mineral Geochem 61:127–180

    Article  Google Scholar 

  116. Folkerts W, Sawatzky G, Haas C, De Groot R, Hillebrecht F (1987) J Phys C Solid State Phys 20:4135

    Article  Google Scholar 

  117. Khalid S, Malik MA, Lewis DJ, Kevin P, Ahmed E, Khan Y, O’Brien P (2015) J Mater Chem C 3:12068–12076

    Article  Google Scholar 

  118. Huang L, Meng L (2007) Mater Sci Eng B 137:310–314

    Article  Google Scholar 

  119. Mattila S, Leiro J, Laajalehto K (2003) Appl Surf Sci 212:97–100

    Article  Google Scholar 

  120. Mattila S, Leiro J, Heinonen M (2004) Surf Sci 566:1097–1101

    Article  Google Scholar 

  121. Schaufuß AG, Nesbitt HW, Kartio I, Laajalehto K, Bancroft GM, Szargan R (1998) Surf Sci 411:321–328

    Article  Google Scholar 

  122. Lehner S, Savage K, Ciobanu M, Cliffel DE (2007) Geochim Cosmochim Acta 71:2491–2509

    Article  Google Scholar 

  123. Lehner S, Savage K (2008) Geochim Cosmochim Acta 72:1788–1800

    Article  Google Scholar 

  124. Savage KS, Stefan D, Lehner SW (2008) Appl Geochem 23:103–120

    Article  Google Scholar 

  125. Rana TR, Khadka DB, Kim J (2015) Mater Sci Semicond Process 40:325–330

    Article  Google Scholar 

  126. Kinner T, Bhandari KP, Bastola E, Monahan BM, Haugen NO, Roland PJ, Bigioni TP, Ellingson RJ (2016) J Phys Chem C 120:5706–5713

    Article  Google Scholar 

  127. **ao P, Fan X-L, Liu L-M, Lau W-M (2014) Phys Chem Chem Phys 16:24466–24472

    Article  Google Scholar 

  128. Bhandari KP, Koirala P, Paudel NR, Khanal RR, Phillips AB, Yan Y, Collins RW, Heben MJ, Ellingson RJ (2015) Sol Energy Mater Sol Cells 140:108–114

    Article  Google Scholar 

  129. Wang YC, Wang DY, Jiang YT, Chen HA, Chen CC, Ho KC, Chou HL, Chen CW (2013) Angew Chem Int Ed 52:6694–6698

    Article  Google Scholar 

  130. Wei Z, Qiu Y, Chen H, Yan K, Zhu Z, Kuang Q, Yang S (2014) J Mater Chem A 2:5508–5515

    Article  Google Scholar 

  131. Kilic B, Turkdogan S, Astam A, Ozer OC, Asgin M, Cebeci H, Urk D, Mucur SP (2016) Sci Rep 6:27052

    Article  Google Scholar 

  132. Wang M, Chen C, Qin H, Zhang L, Fang Y, Liu J, Meng L (2015) Adv Mater Interfaces 2: 1500163

    Google Scholar 

  133. Ameri T, Li N, Brabec CJ (2013) Energ Environ Sci 6:2390–2413

    Article  Google Scholar 

  134. Balasingam SK, Lee M, Kang MG, Jun Y (2013) Chem Commun 49:1471–1487

    Article  Google Scholar 

  135. Lade S, Uplane M, Lokhande C (2001) Mater Chem Phys 68:36–41

    Article  Google Scholar 

  136. Rincón M, Jiménez A, Orihuela A, Martınez G (2001) Sol Energy Mater Sol Cells 70:163–173

    Article  Google Scholar 

  137. Hu Y, Zheng Z, Jia H, Tang Y, Zhang L (2008) J Phys Chem C 112:13037–13042

    Article  Google Scholar 

  138. Goubard F, Wantz G (2013) Polym Int 63(8):1362–1367

    Article  Google Scholar 

  139. Kirkeminde A, Ruzicka BA, Wang R, Puna S, Zhao H, Ren S (2012) ACS Appl Mater Interfaces 4:1174–1177

    Article  Google Scholar 

  140. Murphy R, Strongin DR (2009) Surf Sci Rep 64:1–45

    Article  Google Scholar 

  141. Herbert F, Krishnamoorthy A, Van Vliet K, Yildiz B (2013) Surf Sci 618:53–61

    Article  Google Scholar 

  142. Bedja I, Hagfeldt A (2011) Adv OptoElectron 2011:824927

    Google Scholar 

  143. Cai W, Gong X, Cao Y (2010) Sol Energy Mater Sol Cells 94:114–127

    Article  Google Scholar 

  144. Zhang F, Xu X, Tang W, Zhang J, Zhuo Z, Wang J, Wang J, Xu Z, Wang Y (2011) Sol Energy Mater Sol Cells 95:1785–1799

    Article  Google Scholar 

  145. Richardson BJ, Zhu L, Yu Q (2013) Sol Energy Mater Sol Cells 116:252–261

    Article  Google Scholar 

  146. Yan J, Shamim T, Chou SK, Li H, Luo L, Luan W, Yuan B, Zhang C, ** L (2015) Energy Procedia 75:2181–2186

    Article  Google Scholar 

  147. Nam M, Choi D, Kim S, Lee S, Lee K, Kim S-W (2014) J Mater Chem A 2:9758–9763

    Article  Google Scholar 

  148. Choi H, Nahm C, Kim J, Kim C, Kang S, Hwang T, Park B (2013) Curr Appl Phys 13:S2–S13

    Article  Google Scholar 

  149. Bedja I (2011) Mater Sci Poland 29:171–176

    Article  Google Scholar 

  150. Song XM, Wu JM, Meng L, Yan M (2010) J Am Ceram Soc 93:2068–2073

    Google Scholar 

  151. Faber MS, Lukowski MA, Ding Q, Kaiser NS, ** S (2014) J Phys Chem C 118:21347–21356

    Article  Google Scholar 

  152. Wang D-Y, Li C-H, Li S-S, Kuo T-R, Tsai C-M, Chen T-R, Wang Y-C, Chen C-W, Chen C-C (2016) Sci Rep 6:20397

    Article  Google Scholar 

  153. Wang M, Xue D, Qin H, Zhang L, Ling G, Liu J, Fang Y, Meng L (2016) Mater Sci Eng B 204:38–44

    Article  Google Scholar 

  154. Gong M, Kirkeminde A, **e Y, Lu R, Liu J, Wu JZ, Ren S (2013) Adv Opt Mater 1:78–83

    Article  Google Scholar 

  155. Liu S, Wu J, Yu P, Ding Q, Zhou Z, Li H, Lai C-c, Chueh Y-L, Wang ZM (2014) Nanoscale Res Lett 9:1–7

    Article  Google Scholar 

  156. Yang Z, Wang M, Shukla S, Zhu Y, Deng J, Ge H, Wang X, **ong Q (2015) Sci Rep 5:11377

    Article  Google Scholar 

  157. Ma B, Tong X, Guo C, Guo X, Guo X, Keil FJ (2016) RSC Adv 6:55220–55224

    Article  Google Scholar 

  158. Wang D-Y, Gong M, Chou H-L, Pan C-J, Chen H-A, Wu Y, Lin M-C, Guan M, Yang J, Chen C-W, Wang Y-L, Hwang B-J, Chen C-C, Dai H (2015) J Am Chem Soc 137:1587–1592

    Article  Google Scholar 

  159. Barawi M, Ferrer IJ, Flores E, Yoda S, Ares JR, Sánchez C (2016) J Phys Chem C 120:9547–9552

    Article  Google Scholar 

  160. Cabán-Acevedo M, Kaiser NS, English CR, Liang D, Thompson BJ, Chen H-E, Czech KJ, Wright JC, Hamers RJ, ** S (2014) J Am Chem Soc 136:17163–17179

    Article  Google Scholar 

  161. Shukla S, **ng G, Ge H, Prabhakar RR, Mathew S, Su Z, Nalla V, Venkatesan T, Mathews N, Sritharan T, Sum TC, **ong Q (2016) ACS Nano 10:4431–4440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadia Khalid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalid, S. et al. (2018). Iron Pyrite (FeS2): Sustainable Photovoltaic Material. In: Jackson, M., Ahmed, W. (eds) Micro and Nanomanufacturing Volume II. Springer, Cham. https://doi.org/10.1007/978-3-319-67132-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67132-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67130-7

  • Online ISBN: 978-3-319-67132-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation