Syn- to Post-emplacement Alteration Processes

Their Effects on Original Volcanic Rock Textures

  • Chapter
  • First Online:
Volcanology

Abstract

We now consider the range of syn- to post-emplacement alteration processes and their effects on volcanic and associated sedimentary deposit types and successions. These processes include devitrification, palagonitisation (in mafic glass), hydrothermal alteration, diagenesis, metamorphism, and tectonic deformation, which may significantly modify and in some cases completely disguise original volcanic textures. The process that induces textural change in the first instance is devitrification of volcanic glass as it cools, which is facilitated by ion and gas diffusion through the glass. Secondly, permeation of magmatic hydrous fluids, surface waters, and meteoric water in the subsurface can begin to remobilise elements and initiate hydrothermal alteration of the volcanic glass and original minerals. In older volcanic rock successions, post-depositional processes of ongoing devitrification, hydrothermal alteration, and then metamorphism and deformation can all have the effect of overprinting original volcanic textures and mineralogy. Such processes not only have the ability to overprint original textures but also, in some instances, to obliterate them totally and produce new textures (even apparent or “false”, pseudo-clastic, including fiamme-like textures) that can lead to misconceptions of the original rock types and their origins. This can be particularly important in ore-forming volcanic environments subjected to prolonged polyphase hydrothermal alteration and associated hydraulic fracturing, and can lead to incorrect reconstructions of their paleoenvironmental setting, eruption styles, and ore deposit types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RL (1988) False pyroclastic textures in altered silicic lavas, with implications for volcanic-associated mineralization. Econ Geol 83(7):1424–1446

    Article  CAS  Google Scholar 

  • Arndt NT, Lesher CM, Houlé MG, Lewin E, Lacaze Y (2004) Intrusion and crystallization of a spinifex-textured komatiite sill in Dundonald Township, Ontario. J Petrol 45(12):2555–2571

    Article  CAS  Google Scholar 

  • Ashley PM, Cook ND, Fanning CM (1996) Geochemistry and age of metamorphosed felsic igneous rocks with A-type affinities in the Willyama Supergroup, Olary Block, South Australia, and implications for mineral exploration. Lithos 38(3–4):167–184

    Article  CAS  Google Scholar 

  • Ashley PM, Lawie DC, Conor CHH, Plimer IR (1997) Geology of the Olary Domain, Curnamona Province, South Australia, and field guide to 1997 excursion stops. MESA Rept Book 97(17):51p

    Google Scholar 

  • Bailey JE, Self S (2010) The properties and formation of erosional pipe-shaped structures in ignimbrites around the Valles Caldera. Geol Soc Amer Abstr Progr 42(5):51

    Google Scholar 

  • Barrie CT, Hannington MD (eds) (1999) Volcanic associated massive sulfide deposits: processes and examples in modern and ancient settings. Rev Econ Geol 8

    Google Scholar 

  • Beane RE (1982) Hydrothermal alteration in silicate rocks: southwestern North America. In: Titley SR (ed) Advances in geology of the porphyry copper deposits: southwestern North America. Univ Arizona Press, Tucson, pp 117–137

    Google Scholar 

  • Bear AN, Giordano G, Giampaolo C, Cas RAF (2009) Volcanological constraints on the post-emplacement zeolitisation of ignimbrites and geoarchaeological implications for Etruscan tomb construction (6th–3rd century BC) in the Tufo Rosso a Scorie Nere, Vico Caldera, Central Italy. J Volcanol Geoth Res 183(3–4):183–200

    Google Scholar 

  • Boles JR, Coombs DS (1977) Zeolite facies alteration of sandstones in the Southland Syncline, New Zealand. Am J Sci 277(8):982–1012

    Article  CAS  Google Scholar 

  • Branney MJ, Sparks RSJ (1990) Fiamme formed by diagenesis and burial-compaction in soils and subaqeuous sediments. J Geol Soc Lond 147(6):919–922

    Article  Google Scholar 

  • Briggs ND (1976) Welding and crystallisation zonation in Whakamaru ignimbrite, central North Island, New Zealand. NZ J Geol Geophys 19(2):189–212

    Article  Google Scholar 

  • Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks. Springer, Berlin, Heidelberg, p 428p

    Book  Google Scholar 

  • Bullock LA, Gertisser R, O’Driscoll B (2017) Spherulite formation in obsidian lavas in the Aeolian Islands, Italy. Periodico di Mineralogia 86(1)

    Google Scholar 

  • Burley SD, Worden R (eds) (2003) Sandstone diagenesis: recent and ancient. Int Assoc Sed Repr Ser 4:656p

    Google Scholar 

  • Caporuscio FA, Gardner JN, Schultz-Fellenz ES, Kelley RE (2012) Fumarolic pipes in the Tshirege Member of the Bandelier Tuff on the Pajarito Plateau, Jemez Mountains, New Mexico. Bull Volcanol 74(5):1023–1037

    Article  Google Scholar 

  • Carr RG (1981) A scanning electron microscope study of post-depositional changes in the Matahina Ignimbrite, North Island, New Zealand. NZ J Geol Geophys 24(3):429–434

    Google Scholar 

  • Cas RAF, Hayman P, Pittari A, Porritt L (2008) Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions. J Volc Geotherm Res 174(1–3):209–225

    Article  CAS  Google Scholar 

  • Cas RAF, Giordano G, Balsamo F, Esposito A, Mastro SL (2011a) Hydrothermal breccia textures and processes: Lisca Bianca islet, Panarea volcano, Aeolian Islands, Italy. Econ Geol 106(3):437–450

    Article  CAS  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Allen & Unwin, London, p 528 pp

    Book  Google Scholar 

  • Cas RAF, Marks K, Perazzo S, Beresford SW, Trofimovs J, Rosengren N (2013) Were intercalated komatiites and dacites at the Black Swan nickel sulphide mine, Yilgarn Craton, Western Australia, emplaced as extrusive lavas or intrusive bodies? The significance of breccia textures and contact relationships. Precamb Res 229:133–149

    Article  CAS  Google Scholar 

  • Cas RAF, Wright HMN, Folkes CB, Lesti C, Porreca M, Giordano G, Viramonte JG (2011b) The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bull Volcanol 73(10):1583–1609

    Google Scholar 

  • Castro JM, Beck P, Tuffen H, Nichols AR, Dingwell DB, Martin MC (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Mineral 93(11–12):1816–1822

    Article  CAS  Google Scholar 

  • Clark C, Mumm AS, Faure K (2005) Timing and nature of fluid flow and alteration during Mesoproterozoic shear zone formation, Olary Domain, South Australia. J Met Petrol 23(3):147–164

    Article  CAS  Google Scholar 

  • Clay PL, O’Driscoll B, Gertisser R, Busemann H, Sherlock SC, Kelley SP (2013) Textural characterization, major and volatile element quantification and Ar–Ar systematics of spherulites in the Rocche Rosse obsidian flow, Lipari, Aeolian Islands: a temperature continuum growth model. Contribs Mineral Petrol 165(2):373–395

    Article  CAS  Google Scholar 

  • Condit CB, Mahan KH, Curtis KC, Möller A (2018) Dating metasomatism: monazite and zircon growth during amphibolite facies albitization. Minerals 8(5):187

    Article  Google Scholar 

  • Cooke DR, Simmons SF (2000) Characteristics and genesis of epithermal gold deposits. Rev Econ Geol 13:221–244

    Google Scholar 

  • Coombs DS (1954) The nature and alteration of some Triassic sediments from Southland, New Zealand. R Soc N Z Trans 82:65–109

    Google Scholar 

  • Davies DK, Almon WR, Bonis SB, Hunter BE (1979) Deposition and diagenesis of Tertiary-Holocene volcaniclastics, Guatemala. In: Scholle PA, Schluger PR (eds) Aspects of diagenesis. Soc Econ Paleont Mineral Spec Publ 26:281–306

    Google Scholar 

  • de’Gennaro M, Incoronato A, Mastrolorenzo G, Adabbo M, Spina G (1999) Depositional mechanisms and alteration processes in different types of pyroclastic deposits from Campi Flegrei volcanic field (Southern Italy). J Volc Geotherm Res 91(2–4):303–320

    Google Scholar 

  • de’Gennaro M, Cappelletti P, Langella A, Perrotta A, Scarpati C (2000) Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence. Contrib Mineral Petrol 139(1):17–35

    Google Scholar 

  • Dubé B, Gosselin PA, Mercier-Langevin P, Hannington M, Galley A (2007) Gold-rich volcanogenic massive sulphide deposits. In: Goodfellow WD (ed) Mineral deposits of Canada. Geol Assoc Canada Min Deps Div Spec Publ 5:75–94

    Google Scholar 

  • Fenner CN (1948) Incandescent tuff flows in southern Peru. Geol Soc Am Bull 59(9):879–893

    Article  CAS  Google Scholar 

  • Fenner RE (1932) Concerning basaltic glass. Am Mineral 17:104–107

    Google Scholar 

  • Fenn PM (1977) The nucleation and growth of alkali feldspars from hydrous melts. Canad Mineral 15(2):135–161

    Google Scholar 

  • Fiske RS (1963) Subaqueous pyroclastic flows in the Ohanapecosh Formation, Washington. Geol Soc Am Bull 74:391–406

    Google Scholar 

  • Friedman I, Long W (1976) Hydration rate of obsidian. Science 191(4225):347–352

    Article  CAS  Google Scholar 

  • Friedman I, Long W (1984) Volcanic glasses, their origins and alteration processes. J Non-Cryst Solids 67(1–3):127–133

    Article  CAS  Google Scholar 

  • Furnes H (1973) Variolitic structure in Ordovician pillow lava and its possible significance as an environmental indicator. Geology 1(1):27–30

    Article  Google Scholar 

  • Gardner JE, Befus KS, Watkins J, Hesse M, Miller N (2012) Compositional gradients surrounding spherulites in obsidian and their relationship to spherulite growth and lava cooling. Bull Volcanol 74(8):1865–1879

    Article  Google Scholar 

  • Giachetti T, Gonnermann HM, Gardner JE, Shea T, Gouldstone A (2015) Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochim Cosmochim Acta 148:457–476

    Article  CAS  Google Scholar 

  • Gifkins CC, Herrmann W, Large RR (2005) Altered volcanic rocks: a guide to description and interpretation. University of Tasmania, Centre for Ore Deposit Research, 274 pp

    Google Scholar 

  • Giuliani A, Phillips D, Kamenetsky VS, Fiorentini ML, Farquhar J, Kendrick MA (2014) Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem Geol 374:61–83

    Article  Google Scholar 

  • Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Mineralium Deposita 30(3–4):303–313

    Google Scholar 

  • Hay RL, Iijima A (1968) Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. In: Coats RR, Hay RR, Anderson CA (eds) Studies in volcanology—a memoir in honor of Howel Williams. Geol Soc Am Mem 116:331–376

    Google Scholar 

  • Hayman PC, Cas RAF (2011) Criteria for interpreting kimberlite as coherent: insights from the Muskox and Jericho kimberlites (Nunavut, Canada). Bull Volcanol 73(8):1005–1027

    Article  Google Scholar 

  • Hayman PC, Cas RAF, Johnson M (2009) Characteristics and alteration origins of matrix minerals in volcaniclastic kimberlite of the Muskox pipe (Nunavut, Canada). Lithos 112:473–487

    Article  Google Scholar 

  • Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev 19(1):1–50

    Article  CAS  Google Scholar 

  • Holt EW, Taylor HP (1998) 18O/16O map** and hydrogeology of a short-lived (~10 years) fumarolic (>500°C) meteoric–hydrothermal event in the upper part of the 0.76 Ma Bishop Tuff outflow sheet, California. J Volcanol Geothermal Res 83(1–2):115–139

    Google Scholar 

  • Hutchinson RW (1983) Hydrothermal concepts; the old and the new. Econ Geol 78(8):1734–1741

    Article  Google Scholar 

  • Jakobsson SP (1978) Environmental factors controlling the palagonitization of the Surtsey tephra, Iceland. Bull Geol Soc Denmark 27:91–105

    Article  Google Scholar 

  • Jakobsson SP, Moore JG (1986) Hydrothermal minerals and alteration rates at Surtsey volcano, Iceland. Geol Soc Am Bull 97:648–659

    Article  CAS  Google Scholar 

  • Jackson MD, Gudmundsson MT et al (2019) SUSTAIN drilling at Surtsey volcano, Iceland, tracks hydrothermal and microbiological interactions in basalt 50 years after eruption. Sci Drilling 25:35–46.e

    Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12(3):111–134

    Article  Google Scholar 

  • Kawachi Y, Pringle IJ, Coombs DS (1983) Pillow Lavas of the Eocene Oamaru Volcano, North Otago. Pacific Sci Congr, Dunedin, New Zealand Tour Bh 3

    Google Scholar 

  • Keating GN (2005) The role of water in cooling ignimbrites. J Volcanol Geotherm Res 142(1–2):145–171

    Article  CAS  Google Scholar 

  • Kent AJ, Ashley PM, Fanning CM (2000) Metasomatic alteration associated with regional metamorphism: an example from the Willyama Supergroup, South Australia. Lithos 54(1–2):33–62

    Article  CAS  Google Scholar 

  • Khalaf EE (2014) Diagenetic evolution of the volcaniclastic deposits: an example from Neoproterozoic Dokhan Volcanics in Wadi Queih basin, central Eastern Desert, Egypt. Arabian J Geosci 7(7):2603–2624

    Article  CAS  Google Scholar 

  • Lahaye Y, Arndt N (1996) Alteration of a komatiite flow from Alexo, Ontario, Canada. J Petrol 37(6):1261–1284

    Article  CAS  Google Scholar 

  • Lahaye Y, Arndt N, Byerly G, Chauvel C, Fourcade S, Gruau G (1995) The influence of alteration on the trace-element and Nd isotopic compositions of komatiites. Chem Geol 126(1):43–64

    Article  CAS  Google Scholar 

  • Laznicka P (1988) Breccias and coarse fragmentites: petrology, environments, associations, ores. Elsevier, 832 p

    Google Scholar 

  • Lipman PW (1965) Chemical comparison of glassy and crystalline volcanic rocks. US Geol Surv Bull 1201-D

    Google Scholar 

  • Lipman PW, Christiansen RL (1964) Zonal features of an ash-flow sheet in the Piapi Canyon Formation, southern Nevada. US Geol Surv Prof Pap 501B:B74–B78

    Google Scholar 

  • Lofgren G (1970) Experimental devitrification rates of rhyolitic glass. Geol Soc Am Bull 81:553–560

    Article  CAS  Google Scholar 

  • Lofgren G (1971a) Spherulite textures in glassy and crystalline rocks. J Geophys Res 76:5635–5648

    Article  Google Scholar 

  • Lofgren G (1971b) Experimentally produced devitrification textures in natural rhyolitie glass. Geol Soc Amer Bull 82:111–124

    Article  CAS  Google Scholar 

  • Lydon JW (1984) Ore deposit models—8. Volcanogenic massive sulphide deposits Part I: A descriptive model. Geosci Canada 12:11(4)

    Google Scholar 

  • Lydon JW (1988) Ore deposit models—14. Volcanogenic massive sulphide deposits Part 2: Genetic models. Geosci Canada 15(1)

    Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Mackenzie FT (ed) (2005) Sediments, diagenesis, and sedimentary rocks. Treatise on geochemistry, vol 7. Elsevier, 446 pp

    Google Scholar 

  • McArthur AN, Cas RAF, Orton GJ (1998) Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales). Bull Volcanol 60(4):260–285

    Article  Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. University of Tasmania, CODES Key Centre, 196 pp

    Google Scholar 

  • Milner DA (2001) The structure and eruptive history of Rotorua caldera, Taupo Volcanic Zone, New Zealand. PhD thesis, Univ. of Canterbury, Christchurch, 443 pp

    Google Scholar 

  • Moore JG (1966) Rate of palagonitization of submarine basalt adjacent to Hawaii. US Geol Surv Prof Pap 550-D:D163–D171

    Google Scholar 

  • Noble DC (1967) Sodium potassium and ferrous iron contents of some secondarily hydrated natural silicic glasses. Amer Mineral 52(1–2):230–252

    Google Scholar 

  • Oliver NH, Cleverley JS, Mark G, Pollard PJ, Fu B, Marshall LJ, Rubenach MJ, Williams PJ, Baker T (2004) Modeling the role of sodic alteration in the genesis of iron oxide-copper-gold deposits, eastern Mount Isa block, Australia. Econ Geol 99(6):1145–1176

    Article  CAS  Google Scholar 

  • Page RW, Laing WP (1992) Felsic metavolcanic rocks related to the Broken Hill Pb-Zn-Ag orebody, Australia; geology, depositional age, and timing of high-grade metamorphism. Econ Geol 87(8):2138–2168

    Article  CAS  Google Scholar 

  • Peacock MA (1926) The petrology of Iceland, Part 1. The basic tuffs. R Soc Edinburgh Trans 55:53–76

    Google Scholar 

  • Peacock MA, Fuller RE (1928) Chlorophaeite, sideromelane and palagonite from the Columbia River Plateau. Amer Mineral 13:360–383

    CAS  Google Scholar 

  • Pepper MA, Ashley PM (1998) Volcanic textures in quartzo-feldspathic gneiss of the Willyama Supergroup, Olary Domain, South Australia. Aust J Earth Sci 45(6):971–978

    Article  CAS  Google Scholar 

  • Phillips WJ (1972) Hydraulic fracturing and mineralization. J Geol Soc Lond 128(4):337–359

    Google Scholar 

  • Philpotts A, Ague J (2009) Principles of igneous and metamorphic petrology. Cambridge Univ Press, 684 pp

    Google Scholar 

  • Pittari A, Cas RAF, Lefebvre N, Kurszlaukis S (2015) Alteration styles in the Orion Central Volcanic Complex, Fort à la Corne Kimberlite Field, Saskatchewan, and their effects on primary volcaniclastic textures: implications for facies map** and diamond exploration. Econ Geol 110(1):147–171

    Google Scholar 

  • Porritt LA, Cas RAF (2011) The influence of complex intra-and extra-vent processes on facies characteristics of the Koala Kimberlite, NWT, Canada: volcanology, sedimentology and intrusive processes. Bull Volcanol 73(6):717–735

    Google Scholar 

  • Porritt LA, Cas RAF, Schaefer B, McKnight SW (2012) Textural analysis of strongly altered kimberlite: examples from the EKATI diamond mine, Northwest Territories, Canada. Canad Mineral 50(3):625–641

    Google Scholar 

  • Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10(1–2):254–269

    Google Scholar 

  • Qiu T, Zhu Y (2015) Geology and geochemistry of listwaenite-related gold mineralization in the Sayi gold deposit, **njiang, NW China. Ore Geol Rev 70:61–79

    Google Scholar 

  • Raam A (1968) Petrology and diagenesis of Broughton Sandstone (Permian), Kiama District, New South Wales. J Sed Res 38(2):319–331

    CAS  Google Scholar 

  • Randolph-Flagg N, Breen S, Hernandez A, Manga M, Self S (2017) Evenly spaced columns in the Bishop Tuff (California, USA) as relicts of hydrothermal cooling. Geology 45(11):1015–1018

    Article  Google Scholar 

  • Rona PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20(1):1–104

    Article  CAS  Google Scholar 

  • Ross CS, Smith RL (1961) Ash-flow tuffs: their origin, geologic relations, and identification. US Geol Surv Prof Pap 366:80p

    Google Scholar 

  • Sandstå NR, Robins B, Furnes H, De Wit M (2011) The origin of large varioles in flow-banded pillow lava from the Hooggenoeg Complex, Barberton Greenstone Belt, South Africa. Contrib Mineral Petrol 162(2):365–377

    Article  Google Scholar 

  • Scholle PA, Schluger PR (eds) (1979) Aspects of diagenesis. Soc Econ Paleont Mineral Spec Publ 26:443p

    Google Scholar 

  • Scott RB (1971) Alkali exchange during devitrification and hydration of glasses in ignimbrite cooling units. J Geol 79:100–109

    Article  CAS  Google Scholar 

  • Secor DT (1969) Mechanics of natural extension fracturing at depth in the Earth’s crust. Research in tectonics. Geol Surv Canada Spec Pap; 68–52

    Google Scholar 

  • Seligman AN, Bindeman IN, Watkins JM, Ross AM (2016) Water in volcanic glass: from volcanic degassing to secondary hydration. Geochim Cosmochim Acta 191:216–238

    Article  CAS  Google Scholar 

  • Sheridan MF (1970) Fumarolic mounds and ridges of the Bishop Tuff, California. Geol Soc Am Bull 81(3):851–868

    Article  CAS  Google Scholar 

  • Sibson RH (1996) Structural permeability of fluid-driven fault-fracture meshes. J Struct Geol 18(8):1031–1042

    Google Scholar 

  • Smith RK, Tremallo RL, Lofgren GE (2001) Growth of megaspherulites in a rhyolitic vitrophyre. Am Mineral 86(5–6):589–600

    Google Scholar 

  • Smith RL (1960) Zones and zonal variations in welded ash-flows. US Geol Surv Prof Pap 35FF:149–159

    Google Scholar 

  • Smith RL, Bailey RA (1966) The Bandelier Tuff: a study of ash-flow eruption cycles from zoned magma chambers. Bull Volcanol 29(1):83–104

    Article  CAS  Google Scholar 

  • Sparks RSJ, Tait SR, Yanev Y (1999) Dense welding caused by volatile resorption. J Geol Soc 156(2):217–225

    Article  CAS  Google Scholar 

  • Stevens BP, Barron LM (2002) Volcanic textures in the Palaeoproterozoic Hores Gneiss, Broken Hill, Australia. New South Wales Geol Surv Quart Notes 113:1–22

    Google Scholar 

  • Stevens BP, Barnes RG, Brown RE, Stroud WJ, Willis IL (1988) The Willyama Supergroup in the Broken Hill and Euriowie Blocks, New South Wales. Precamb Res 40:297–327

    Article  Google Scholar 

  • Stevens BP, Bradley GM (2018) Sedimentology in metamorphic rocks, the Willyama Supergroup, Broken Hill, Australia. Aust J Earth Sci 65(1):25–59

    Article  CAS  Google Scholar 

  • Stevens BP, Wyborn LAI, Jagodzinski EA (1998) The origin of Hores Gneiss at Broken Hill, N.S.W. and its role in mineralization. 14th Australian geological convention, Townsville. Geol Soc Aust Abstracts 49:431

    Google Scholar 

  • Stimac J, Hickmott D, Abell R, Larocque ACL, Broxton D, Gardner JE, Chipera S, Wolff JA, Gauerke E (1996) Redistribution of Pb and other volatile trace metals during eruption, devitrification, and vapor-phase crystallization of the Bandelier Tuff, New Mexico. J Volcanol Geoth Res 73(3):245–266

    Article  CAS  Google Scholar 

  • Stripp GR, Field M, Schumacher JC, Sparks RS, Cressey G (2006) Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J Met Petrol 24(6):515–534

    Article  CAS  Google Scholar 

  • Stroncik NA, Schmincke H-U (2001) Evolution of palagonite: crystallization, chemical changes, and element budget. Geochem Geophys Geosyst 2(7)

    Google Scholar 

  • Stroncik NA, Schmincke H-U (2002) Palagonite—a review. Int J Earth Sci 91(4):680–697

    Article  CAS  Google Scholar 

  • Surdam RC, Boles JR (1979) Diagenesis of volcanic sandstones. In: Scholle PA, Schluger PR (eds) Aspects of diagenesis. Soc Econ Paleont Mineral Spec Publ 26:227–242

    Google Scholar 

  • Titley SR (ed) (1982) Advances in geology of the porphyry copper deposits: southwestern North America. Univ Ariz Press, Tucson, pp 117–137

    Google Scholar 

  • Urabe T, Scott SD, Hattori KE (1983) A comparison of footwall-rock alteration and geothermal systems beneath some Japanese and Canadian volcanogenic massive sulfide deposits. In: Ohmoto H, Skinner BJ (eds) The Kuroko and related volcanogenic massive sulphide deposits. Econ Geol Monogr 5:345–364

    Google Scholar 

  • Valenzuela A, Donaire T, Pin C, Toscano M, Hamilton MA, Pascual E (2011) Geochemistry and U-Pb dating of felsic volcanic rocks in the Riotinto-Nerva unit, Iberian Pyrite Belt, Spain: crustal thinning, progressive crustal melting and massive sulphide genesis. J Geol Soc Lond 168(3):717–732

    Article  CAS  Google Scholar 

  • Vaniman D (2006) Tuff mineralogy. In: Heiken G (ed) Tuffs-their properties, uses, hydrology, and resources. Geol Soc Am Spec Pap 408:11–15

    Google Scholar 

  • Von Aulock FW, Nichols ARL, Kennedy BM, Oze C (2013) Timescales of texture development in a cooling lava dome. Geochim Cosmochim Acta 114:72–80

    Article  Google Scholar 

  • Watkins J, Manga M, Huber C, Martin M (2009) Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles. Contrib Mineral Petrol 157:163–172

    Google Scholar 

  • Willis IL, Brown RE, Stroud WJ, Stevens BP (1983) The early Proterozoic Willyama Supergroup: stratigraphic subdivision and interpretation of high to low-grade metamorphic rocks in the Broken Hill Block, New South Wales. J Geol Soc Aust 30(1–2):195–224

    Article  Google Scholar 

  • Wright JV (1979) Formation, transport and deposition of ignimbrites and welded tuffs. PhD, Imperial College, University of London, 451 pp

    Google Scholar 

  • Wright JV, Haydon RC, McConachy GW (1987) Sedimentary model for the giant Broken Hill Pb-Zn deposit, Australia. Geology 15(7):598–602

    Article  CAS  Google Scholar 

  • Wright JV, Haydon RC, McConachy GW (1993) Sedimentary analysis and implications for Pb-Zn mineralisation at Broken Hill, Australia. James Cook Univ N Qld EGRU Contrib 48:91 pp

    Google Scholar 

  • Wright HM, Lesti C, Cas RAF, Porreca M, Viramonte JG, Folkes CB, Giordano G (2011) Columnar jointing in vapor-phase-altered, non-welded Cerro Galán Ignimbrite, Paycuqui, Argentina. Bull Volcanol 73(10):1567–1582

    Article  Google Scholar 

  • Wright JV, McConachy GW (1998) Curnamona project generation. Rept Pasminco Explor, 64 pp (unpubl)

    Google Scholar 

  • Wyborn L (1998) Geochemical variations in the ‘Potosi gneiss’: preliminary assessment of data from the Pasminco whole rock geochemical database. Aust Geol Surv Org Prof Opin 1998(08):14 pp

    Google Scholar 

  • Zheng H, Sun X, Wang J, Zhu D, Zhang X (2018) Devitrification pores and their contribution to volcanic reservoirs: a case study in the Hailar Basin, NE China. Mar Petrol Geol 98:718–732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray Cas .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cas, R., Wright, J.V., Giordano, G. (2024). Syn- to Post-emplacement Alteration Processes. In: Volcanology. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-66613-6_13

Download citation

Publish with us

Policies and ethics

Navigation