Novel Design of a Family of Legged Mobile Lander

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Included in the following conference series:

  • 4233 Accesses

Abstract

During extraterrestrial planet exploration programs, autonomous robots are deployed using separate landers. In this paper, a concept of a novel legged robot is introduced which has inbuilt the features of lander and rover, including landing and walking capabilities as well as being deployable, orientation adjusted and terrain adaptable. Firstly, motion characteristics of the novel legged robot map** its functions are extracted, which can be divided into global and local motion characteristics. Secondly, structures of legs are designed according to the extracted motion characteristics, mainly composed of upper and lower parts. Finally, numerous structures of legged mobile landers are obtained and presented by assembling the same or different structures of legs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Donahue, B.B., Caplin, G., Smith, D.B., Behrens, J.W., Maulsby, C.: Lunar lander concepts for human exploration. J. Spacecr. Rocket. 45, 383–393 (2008)

    Article  Google Scholar 

  2. Hapke, B.: Surveyor I and Luna IX pictures and the Lunar soil. Icarus 6, 254–269 (1967)

    Article  Google Scholar 

  3. Williams, R.J., Gibson, E.K.: The origin and stability of lunar goethite, hematite and magnetite. Earth Planet. Sci. Lett. 17, 84–88 (1972)

    Article  Google Scholar 

  4. Weiss, S.P.: Apollo experience report: lunar module structural subsystem (1973)

    Google Scholar 

  5. Parkinson, R.: The use of system models in the EuroMoon spacecraft design. Acta Astronaut. 44, 437–443 (1999)

    Article  Google Scholar 

  6. Okada, T., Sasaki, S., Sugihara, T., Saiki, K., Akiyama, H., Ohtake, M., et al.: Lander and rover exploration on the lunar surface: a study for SELENE-B mission. Adv. Space Res. 37, 88–92 (2006)

    Article  Google Scholar 

  7. Prinzell III, L.J., Kramer, L.J., Norman, R.M., Arthur III, J.J., Williams, S.P., Shelton, K.J., et al.: Synthetic and enhanced vision system for altair lunar lander (2009)

    Google Scholar 

  8. Wu, W., Yu, D.: Key technologies in the Chang’E-3 soft-landing project. J. Deep Space Explor. 1, 105–109 (2014)

    Google Scholar 

  9. Peng, H., Liu, J., Zhang, Z.: Conceptual design of a lunar lander. Spacecr. Eng. 1, 006 (2008)

    Google Scholar 

  10. Ringrose, T., Towner, M., Zarnecki, J.: Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1–60. Icarus 163, 78–87 (2003)

    Article  Google Scholar 

  11. Heet, T.L., Arvidson, R., Cull, S., Mellon, M., Seelos, K.: Geomorphic and geologic settings of the Phoenix Lander mission landing site. J. Geophys. Res.: Planet. 114 (2009)

    Google Scholar 

  12. Iagnemma, K., Shibly, H., Rzepniewski, A., Dubowsky, S.: Planning and control algorithms for enhanced rough-terrain rover mobility. In: International Symposium on Artificial Intelligence Robotics & Automation in Space (2001)

    Google Scholar 

  13. Lindemann, R.: Mars exploration rover mobility development-mechanical mobility hardware design, development, and testing. Robot. Autom. Mag. IEEE 13, 19–26 (2006)

    Article  Google Scholar 

  14. Chuankai, L., Baofeng, W., Jia, W.: Integrated INS and vision based orientation determination and positioning of CE-3 lunar rover. J. Spacec. TT&C Tech. 33, 250–257 (2014)

    Google Scholar 

  15. Bertrand, R., Lamon, P., Michaud, S., Schiele, A., Siegwart, R.: The SOLERO rover for regional exploration of planetary surfaces (2003)

    Google Scholar 

  16. Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Piguet, R., Siegwart, R.: An innovative space rover with extended climbing abilities. Space Robot. 36, 333–339 (2000)

    Google Scholar 

  17. Baglioni, P., Elfving, A., Ravera, F.: The ExoMars rover - overview of phase B1 results (2008)

    Google Scholar 

  18. Wilcox, B.H.: ATHLETE: a mobility and manipulation system for the moon. In: Aerospace Conference, pp. 1–10 (2007)

    Google Scholar 

  19. Wilcox, B.H.: ATHLETE: an option for mobile lunar landers. In: Aerospace Conference, pp. 1–8 (2008)

    Google Scholar 

  20. Laird, D., Raptis, I.A., Price, J.: Design and validation of a centimeter-scale robot collective. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 918–923 (2014)

    Google Scholar 

  21. Liang, L., Zhang, Z., Guo, L., Yang, C., Zeng, Y., Li, M., Ye, P.: Mobile lunar lander crewed lunar exploration missions. Manned Spacefl. 21(5), 472–478 (2015)

    Google Scholar 

  22. Renzhang, Z., Hongfang, W., **aoguang, W., et al.: Advances in the Soviet/Russian EVA spaceflight. Manned Spacefl. 1(15), 25–45 (2009)

    Google Scholar 

  23. Birkenstaedt, B.M., Hopkins, J., Kutter, B.F., et al.: Lunar lander configurations incorporating accessibility, mobility, and centaur cryogenic propulion experience. In: AIAA Space Conference, vol. 7284, pp. 6–9

    Google Scholar 

  24. Yang, P., Gao, F.: Leg kinematic analysis and prototype experiments of walking-operating multifunctional hexapod robot. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 228, 2217–2232 (2014)

    Article  Google Scholar 

  25. Gao, F., Li, W., Zhao, X., **, Z., Zhao, H.: New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs. Mech. Mach. Theory 37, 1395–1411 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the partial financial supports under the projects from the National Natural Science Foundation of China (Grant No. 51323005, Nos. 51335007, U1613208), the National Basic Research Program of China, (Grant No. 2013CB035501), and the research project of State Key Laboratory of Mechanical System and Vibration (Grant No. NSVZD201608).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhong Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lin, R., Guo, W. (2017). Novel Design of a Family of Legged Mobile Lander. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation