On the Use of the Tree Structure of Depth Levels for Comparing 3D Object Views

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10424))

Included in the following conference series:

Abstract

Today the simple availability of 3D sensory data, the evolution of 3D representations, and their application to object recognition and scene analysis tasks promise to improve autonomy and flexibility of robots in several domains. However, there has been little research into what can be gained through the explicit inclusion of the structural relations between parts of objects when quantifying similarity of their shape, and hence for shape-based object category recognition. We propose a Mathematical Morphology inspired hierarchical decomposition of 3D object views into peak components at evenly spaced depth levels, casting the 3D shape similarity problem to a tree of more elementary similarity problems. The matching of these trees of peak components is here compared to matching the individual components through optimal and greedy assignment in a simple feature space, trying to find the maximum-weight-maximal-match assignments. The matching thus achieved provides a metric of total shape similarity between object views. The three matching strategies are evaluated and compared through the category recognition accuracy on objects from a public set of 3D models. It turns out that all three methods yield similar accuracy on the simple features we used, while the greedy method is fastest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aldoma, A., Blodow, N., Gossow, D., Gedikli, S., Rusu, R., Vincze, M., Bradski, G.: CAD-model recognition and 6DOF pose estimation using 3D cues. In: ICCV Workshop on 3D Representation and Recognition (3dRR 2011), Barcelona (2011)

    Google Scholar 

  2. Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. In: Proceedings of the 13th International Conference on Neural Information Processing Systems (NIPS 2000), pp. 798–804. MIT Press, Cambridge (2000). http://portal.acm.org/citation.cfm?id=3008867

  3. Boscaini, D., Masci, J., Melzi, S., Bronstein, M.M., Castellani, U., Vandergheynst, P.: Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Comput. Graph. Forum 34(5), 13–23 (2015). http://dx.doi.org/10.1111/cgf.12693

    Article  Google Scholar 

  4. Graham, M.W., Higgins, W.E.: Optimal graph-theoretic approach to 3D anatomical tree matching. In: 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, pp. 109–112. IEEE, April 2006. http://dx.doi.org/10.1109/isbi.2006.1624864

  5. Graham, M.W., Higgins, W.E.: Globally optimal model-based matching of anatomical trees. In: Medical Imaging, vol. 6144, pp. 614415-1–614415-15 (2006). http://dx.doi.org/10.1117/12.651719

  6. Huber, D., Kapuria, A., Donamukkala, R.R., Hebert, M.: Parts-based 3D object classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 04), July 2004

    Google Scholar 

  7. Jacobs, D.W.: Perceptual organization as generic object recognition, North-Holland, vol. 130, pp. 295–329, December 2001. http://www.sciencedirect.com/science/article/pii/S0166411501800303

  8. Jiantao, P., Yi, L., Guyu, X., Hongbin, Z., Weibin, L., Uehara, Y.: 3D model retrieval based on 2D slice similarity measurements. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2004), pp. 95–101 (2004). http://dx.doi.org/10.1109/3dpvt.2004.3

  9. Jonker, R., Volgenant, A.: A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing 38(4), 325–340 (1987). http://dx.doi.org/10.1007/bf02278710

    Article  MathSciNet  MATH  Google Scholar 

  10. Jouili, S., Mili, I., Tabbone, S.: Attributed graph matching using local descriptions. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 89–99. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04697-1_9

    Chapter  Google Scholar 

  11. Körtgen, M., Novotni, M., Klein, R.: 3D shape matching with 3D shape contexts. In: The 7th Central European Seminar on Computer Graphics (2003). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.9266

  12. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. 2(1–2), 83–97 (1955). http://dx.doi.org/10.1002/nav.3800020109

    Article  MathSciNet  MATH  Google Scholar 

  13. Lai, K., Fox, D.: Object recognition in 3D point clouds using web data and domain adaptation. Int. J. Robot. Res. 29(8), 1019–1037 (2010). http://ijr.sagepub.com/cgi/doi/10.1177/0278364910369190

    Article  Google Scholar 

  14. Marton, Z.C., Balint-Benczedi, F., Mozos, O., Blodow, N., Kanezaki, A., Goron, L., Pangercic, D., Beetz, M.: Part-based geometric categorization and object reconstruction in cluttered table-top scenes. J. Intell. Robot. Syst. 76(1), 35–56 (2014). http://dx.doi.org/10.1007/s10846-013-0011-8

    Article  Google Scholar 

  15. Masci, J., Rodolà, E., Boscaini, D., Bronstein, M.M., Li, H.: Geometric deep learning. In: SIGGRAPH ASIA 2016 Courses (SA 2016), NY, USA (2016). http://dx.doi.org/10.1145/2988458.2988485

  16. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pratikakis, I., Spagnuolo, M., Theoharis, T., Editors, R.V., Dutagaci, H., Godil, A., Cheung, C.P., Furuya, T., Hillenbrand, U., Ohbuchi, R.: SHREC 2010 - shape retrieval contest of range scans. In: Proceedings of Eurographics (2010). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.361.8068

  18. Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., Vincze, M.: Segmentation of unknown objects in indoor environments. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4791–4796 (2012)

    Google Scholar 

  19. Rusu, R.B., Bradski, G., Thibaux, R., Hsu, J.: Fast 3D recognition and pose using the viewpoint feature histogram. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2155–2162. IEEE (2004). http://dx.doi.org/10.1109/iros.2010.5651280

  20. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4(8), 1153–1160 (1995). http://dx.doi.org/10.1109/83.403422

    Article  Google Scholar 

  21. Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: Skeleton based shape matching and retrieval. In: Shape Modeling International, pp. 130–139. IEEE (2003)

    Google Scholar 

  22. Tangelder, J.W.H., Veltkamp, R.C.: A survey of content based 3D shape retrieval methods. In: Shape Modeling International, pp. 145–156 (2004). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.8133

  23. Torsello, A., Hidovic, D., Pelillo, M.: Four metrics for efficiently comparing attributed trees. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 467–470. IEEE, August 2004. http://dx.doi.org/10.1109/icpr.2004.1334263

  24. Torsello, A., Hidovic-Rowe, D., Pelillo, M.: Polynomial-time metrics for attributed trees. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1087–1099 (2005). http://dx.doi.org/10.1109/tpami.2005.146

    Article  Google Scholar 

  25. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 272–285 (2007). http://dx.doi.org/10.1109/tpami.2007.28

    Article  Google Scholar 

  26. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., **ao, J.: 3D ShapeNets: a deep representation for volumetric shapes - IEEE Xplore Document. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015. http://ieeexplore.ieee.org/abstract/document/7298801/

  27. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Comput. Graph. 26(5), 733–743 (2002). http://dx.doi.org/10.1016/s0097-8493(02)00128--0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Bracci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bracci, F., Hillenbrand, U., Marton, ZC., Wilkinson, M.H.F. (2017). On the Use of the Tree Structure of Depth Levels for Comparing 3D Object Views. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10424. Springer, Cham. https://doi.org/10.1007/978-3-319-64689-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64689-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64688-6

  • Online ISBN: 978-3-319-64689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation