Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 106))

Abstract

In article a general description of thermographic camera structure is shown alongside with outline of signal processing operations in typical observational infrared camera. There are presented examples of digital image processing engine featuring flexible and fast implementation. There are presented also developed by authors detection and object tracking methods on thermographic video streams. Methods were tested and implemented in real life systems and experimentally verified. Based on these results, it turned out that a detection method is characterized by a high probability of detection at a relatively low probability of false alarm, and the method of tracking allows effective determination of the trajectory of moving objects in thermographic images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 139.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing (2nd ed.). Prentice-Hall.

    Google Scholar 

  2. Holst, G. C. (1998). Testing and evaluating of infrared imaging systems. SPIE Optical Engineering Press.

    Google Scholar 

  3. Sosnowski, T., Orżanowski, T., Kastek, M., & Chmielewski, K. (2007). Digital image processing system for thermal cameras. In Advanced Infrared Technology and Applications AITA 9, Leon, 8–12.10.2007.

    Google Scholar 

  4. Sosnowski, T., Bieszczad, G., Kastek, M., & Madura, H. (2010). Digital image processing in high resolution infrared camera with use of programmable logic device. Proceedings of SPIE, 7838, 78380U.

    Article  Google Scholar 

  5. Bieszczad, G., Sosnowski, T., Madura, H., Kastek, M., & Bareła, J. (2010). Adaptable infrared image processing module implemented in FPGA. Proceedings of SPIE, 7660, 76603Z.

    Article  Google Scholar 

  6. Bieszczad, G., Sosnowski, T., Madura, H., Kastek, M., & Bareła, J. (2011). Image processing module for high-speed thermal camera with cooled detector. Proc. SPIE, 8012, 80120L.

    Article  Google Scholar 

  7. Orżanowski, T., Madura, H., Kastek, M., & Sosnowski, T. (2008). Nonuniformity correction algorithm for microbolometer infrared focal plane array. In M. Strojnik (Ed.), Advanced infrared technology and applications 2007 (pp. 263–269). Leon: Mexico.

    Google Scholar 

  8. Krupiński, M., Bieszczad, G., Sosnowski, T., Madura, H., & Gogler, S. (2014). Non-uniformity correction in microbolometer array with temperature influence compensation. Metrology and Measurement Systems, XXI(4), 709–718.

    Google Scholar 

  9. Dulski, R., Powalisz, P., Kastek, M., & Trzaskawka, P. (2010). Enhancing image quality produced by IR cameras. Proceedings of SPIE, 7834, 783415.

    Article  Google Scholar 

  10. Dulski, R., Madura, H., Piatkowski, T., & Sosnowski, T. (2007). Analysis of a thermal scene using computer simulations. Infrared Physics and Technology, 49(3), 257–260.

    Google Scholar 

  11. Accetta, J. S., & Shumaker, D. L. (1993). The infrared and electro-optical systems handbook. Bellingham, WA: Ann Arbor MI and SPIE Press.

    Google Scholar 

  12. Bieszczad, G. (2005). Metoda rozpoznawania wzorców w obrazie graficznym, VI Międzynarodowa Konferencja Elektroniki I Telekomunikacji Studentów i Młodych Pracowników Nauki, SECON 2005, 8–9.11.2005 Warszawa.

    Google Scholar 

  13. Bieszczad, G., & Sosnowski, T. (2008). Real-time mean-shift based tracker for thermal vision. In Quantitative InfraRed and Thermography QIRT 2008 Conference.

    Google Scholar 

  14. Hager, G., & Belhumeur, P. (1998). Efficient region tracking with parametric models of geometry and illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10), 1025–1039.

    Article  Google Scholar 

  15. Venkatesh Babu, R., Patrick, P., & Patrick, B. (2007). Robust tracking with motion estimation and local Kernel-based color modeling. Image and Vision Computing, 25, 1205–1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Sosnowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sosnowski, T., Bieszczad, G., Madura, H. (2018). Image Processing in Thermal Cameras. In: Nawrat, A., Bereska, D., Jędrasiak, K. (eds) Advanced Technologies in Practical Applications for National Security. Studies in Systems, Decision and Control, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-64674-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64674-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64673-2

  • Online ISBN: 978-3-319-64674-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation