Early Postnatal Development of Somastostatinergic Systems in Brainstem Respiratory Network

  • Chapter
  • First Online:
The Plastic Brain

Abstract

Somatostatin is a peptide able to stop breathing, acting in the neural network that generates and control the respiratory rhythm. In this chapter, we present data on the early postnatal development of somatostatinergic systems in the mouse brainstem and summarize evidence for their influence on the generation and control of the respiratory rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

7:

Facial nucleus

10:

Dorsal motor nucleus of vagus

12 or XII:

Hypoglossal nucleus

Amb:

Ambiguus nucleus

AVC:

Anteroventral cochlear nucleus

BötC:

Bötzinger nucleus

CIC:

Central nucleus inferior colliculus

CPG:

Central pattern generator

Cu:

Cuneate nucleus

cVRG:

Caudal ventral respiratory group

DMTg:

Dorsomedial tegmental area

DPGi:

Dorsal paragigantocellular nucleus

DRC:

Dorsal respiratory column

E:

Embryonic

ECIC:

External cortex of the inferior colliculus

ECu:

External cuneate nucleus

Gi:

Gigantocellular reticular nucleus

GiV:

Gigantocellular reticular nucleus, ventral part

GrC:

Granular layer of the cochlear nucleus

IO:

Inferior olive

IRt:

Intermediate reticular nucleus

KF:

Kölliker-Fuse nucleus

LC:

Locus coeruleus

LPBE:

Lateral parabrachial nucleus, external part

LPBS:

Lateral parabrachial nucleus, superior part

LPGi:

Lateral paragigantocellular nucleus

LRt:

Lateral reticular nucleus

LVPO:

Lateral ventral periolivary nucleus

MdD:

Medullary reticular nucleus, dorsal part

ml:

Medial lemniscus

Mo5:

Motor trigeminal nucleus

MPB:

Medial parabrachial nucleus

MVe:

Medial vestibular nucleus

MVeMC:

Medial vestibular nucleus, mediocaudal part

MVePC:

Medial vestibular nucleus, parvicellular part

MVPO:

Medioventral periolivary nucleus

NK1R:

Neurokinin 1 receptor

NTS:

Nucleus of solitary tract (labeled Sol in figures)

P:

Postnatal

P7:

Perifacial zone

PCRtA:

Parvicellular reticular formation

Pert:

Parvicellular reticular nucleus

pFRG:

Parafacial respiratory group

PGi:

Paragigantocellular nucleus

ppy:

Peripyramidal nucleus

preBötC:

PreBötzinger complex

PRG:

Pontine respiratory group

py:

Pyramidal tract

RIA:

Radioimmunoassay

RTN:

Retrotrapezoid nucleus

RtTg:

Reticulotegmental nucleus of the pons

RVL:

Rostroventrolateral reticular nucleus

rVRG:

Rostral ventral respiratory group

scp:

Superior cerebelar peduncule

SIDS:

Sudden infant death syndrome

Sol DL:

Dorsolateral sub nucleus of NTS

Sol V:

Ventral NTS

Sol VL:

Ventrolateral sub nucleus of NTS

sp5:

Spinal trigeminal tract

SpVe:

Spinal vestibular nucleus

SST:

Somatostatin

Su5:

Supratrigeminal nucleus

VCP:

Ventral cochlear nucleus, posterior part

VRC:

Ventral respiratory column

References

  • Alheid G, McCrimmon D (2008) The chemical neuroanatomy of breathing. Respir Physiol Neurobiol 164:3–11. doi:10.1016/j.resp.2008.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi A, Denavit-Saubié M, Champagnat J (1995) Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. Physiol Rev 75:1–45

    CAS  PubMed  Google Scholar 

  • Bouras C, Magistretti PJ, Morrison JH, Constantinidis J (1987) An immunohistochemical study of pro-somatostatin-derived peptides in the human brain. Neuroscience 22:781–800

    Article  CAS  PubMed  Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    Article  CAS  PubMed  Google Scholar 

  • Burke P, Abbott S, McMullan S, Goodchild A, Pilowsky P (2010) Somatostatin selectively ablates post-inspiratory activity after injection into the Bötzinger complex. Neuroscience 167(2):528–539. doi:10.1016/j.neuroscience.2010.01.065

    Article  CAS  PubMed  Google Scholar 

  • Butler RK, White LC, Frederick-Duus D, Kaigler KF, Fadel JR, Wilson MA (2012) Comparison of the activation of somatostatin and neuropeptide Y containing neuronal populations of the rat amygdala following two different anxiogenic stressors. Exp Neurol 238:52–63. doi:10.1016/j.expneurol.2012.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier V, Vaudry H, Mallet E, Laquerrière A, Leroux P (1998) Increased density of somatostatin binding sites in respiratory nuclei of the brainstem in sudden infant death syndrome. Neuroscience 86:159–166

    Article  CAS  PubMed  Google Scholar 

  • Cervia D, Casini G, Bagnoli P (2008) Physiology and pathology of somatostatin in the mammalian retina: a current view. Mol Cel Endocrinol 286:112–122. doi:10.1016/j.mce.2007.12.009

    Article  CAS  Google Scholar 

  • Chen Z, Hedner T, Hedner J (1990) Local application of somatostatin in the rat ventrolateral brain medulla induces apnea. J Appl Physiol 69:2233–2238

    CAS  PubMed  Google Scholar 

  • Chigr F, Najimi M, Leduque P, Charnay Y, Jordan D, Chiyvialle J, Tohyama M, Kopp N (1989) Anatomical distribution of somatostatin immunoreactivity in the infant brainstem. Neuroscience 29:615–628

    Article  CAS  PubMed  Google Scholar 

  • Corleto V (2010) Somatostatin and the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 17(1):63–68. doi:10.1097/MED.0b013e32833463ed

    Article  CAS  PubMed  Google Scholar 

  • Dal Monte M, Petrucci C, Cozzi A, Allen JP, Bagnoli P (2003) Somatostatin inhibits potassium-evoked glutamate release by activation of the sst(2) somatostatin receptor in the mouse retina. Naunyn Schmiedeberg’s Arch Pharmacol 367(2):188–192

    Article  CAS  Google Scholar 

  • Doi A, Ramirez JM (2008) Neuromodulation and the orchestration of the respiratory rhythm. Respir Physiol Neurobiol 164(1–2):96–104. doi:10.1016/j.resp.2008.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas FL, Palkovits M (1982) Distribution and quantitative measurements of somatostatin-like immunoreactivity in the lowerbrainstem of the rat. Brain Res 242(2):369–373

    Article  CAS  PubMed  Google Scholar 

  • Engin E, Stellbrink J, Treit D, Dickson C (2008) Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience 157:666–676. doi:10.1016/j.neuroscience.2008.09.037

    Article  CAS  PubMed  Google Scholar 

  • Errchidi S, Monteau R, Hilaire G (1991) Noradrenergic modulation of the medullary respiratory rhythm generator in the newborn rat: an in vitro study. J Physiol Lond 443:477–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman J, Kam K (2015) Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J Physiol 593(1):3–23. doi:10.1113/jphysiol.2014.277632

    Article  CAS  PubMed  Google Scholar 

  • Feldman J, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26:239–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman J, Del Negro CA, Gray PA (2013) Understanding the rhythm of breathing: so near, yet so far. Annu Rev Physiol 75:423–452. doi:10.1146/annurev-physiol-040510-130049

    Article  CAS  PubMed  Google Scholar 

  • Franklin K, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Gray P, Rekling J, Bocchiaro C, Feldman J (1999) Modulation of respiratory frequency by peptidergic input to rhythmogenic neurons in the preBötzinger complex. Science 286:1566–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray P, Janczewski W, Mellen N, McCrimmon D, Feldman J (2001) Normal breathing requires preBötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 4:927–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray PA, Hayes JA, Ling GY, Llona I, Tupal S, Picardo MC, Ross SE, Hirata T, Corbin JG, Eugenín J, Del Negro CA (2010) Developmental origin of preBötzinger complex respiratory neurons. J Neurosci 30:14883–14895. doi:10.1523/JNEUROSCI.4031-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guyenet PG, Sevigny P, Weston MC, Stornetta RL (2002) Neurokinin-1 receptor-expressing cells of the ventral respiratory group are functionally heterogeneous and predominantly glutamatergic. J Neurosci 22:3806–3816

    CAS  PubMed  Google Scholar 

  • Harfstrand A, Kalia M, Fuxe K, Kaijser L, Agnati LF (1984) Somatostatin-induced apnea: interaction with hypoxia and hypercapnea in the rat. Neurosci Lett 50:37–42

    Article  CAS  PubMed  Google Scholar 

  • Hilaire G, Duron B (1999) Maturation of the mammalian respiratory system. Physiol Rev 79:325–360

    CAS  PubMed  Google Scholar 

  • Inagaki S, Shiosaka S, Takatsuki K, Sakanaka M, Takagi H, Senba E, Kawai Y, Minagawa H, Matsuzaki T, Tohyama M (1982) Regional distribution of somatostatin-containing neuron system in the lower brain stem of the neonatal rat. J Hirnforsch 23(1):77–85

    CAS  PubMed  Google Scholar 

  • Infante CD, von Bernhardi R, Rovegno M, Llona I, Eugenín JL (2003) Respiratory responses to pH in the absence of pontine and dorsal medullary areas in the newborn mouse in vitro. Brain Res 984(1–2):198–205

    Article  CAS  PubMed  Google Scholar 

  • Jacobowitz DM, Abbott LC (1998) Chemoarchitectonic atlas of the develo** mouse brain. CRC Press LLC, Boca Raton

    Google Scholar 

  • Jacquin T, Champagnat J, Madamba S, Denavit-Saubié M, Siggins GR (1988) Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of I M, a non-inactivating voltage-dependent outward current blocked by muscarinic agonist. Proc Natl Acad Sci U S A 85:948–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson O, Hökfelt T, Elde R (1984) Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13:265–339

    Article  CAS  PubMed  Google Scholar 

  • Johnson AD, Peoples J, Stornetta RL, Van Bockstaele EJ (2002) Opioid circuits originating from the nucleus paragigantocellularis and their potential role in opiate withdrawal. Brain Res 955:72–84

    Article  CAS  PubMed  Google Scholar 

  • Kalia M (1981) Anatomical organization of central respiratory neurons. Annu Rev Physiol 43:105–120

    Article  CAS  PubMed  Google Scholar 

  • Kalia M, Fuxe K, Agnati L, Hökfelt T, Härfstrand A (1984a) Somatostatin produces apnea and is localized in medullary respiratory nuclei: a possible role in apneic syndromes. Brain Res 296:339–344

    Article  CAS  PubMed  Google Scholar 

  • Kalia M, Fuxe K, Hökfelt T, Johansson O, Lang R, Ganten D, Cuello C, Terenius L (1984b) Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus tractus solitarius of the rat. J Comp Neurol 222:409–444

    Article  CAS  PubMed  Google Scholar 

  • Keri G, Erchegyi J, Horvath A, Mezo I, Idei M, Vantus T, Balogh A, Vadasz Z, Bokonyi G, Seprodi J, Teplan I, Csuka O, Tejeda M, Gaal D, Szegedi Z, Szende B, Roze C, Kalthoff H, Ullrich A (1996) A tumor-selective somatostatin analog (TT-232) with strong in vitro and in vivo antitumor activity. Proc Natl Acad Sci U S A 93:12513–12518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney HC, Thach BT (2009) The sudden infant death syndrome. N Engl J Med 361(8):795–805. doi:10.1056/NEJMra0803836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney HC, Filiano JJ, Harper RM (1992) The neuropathology of the sudden infant death syndrome. A review. J Neuropathol Exp Neurol 51:115–126

    Article  CAS  PubMed  Google Scholar 

  • Kochanek KD, Murphy SL, Xu J, Arias E (2014) Mortality in the United States, 2013. NCHS Data Brief 178:1–8

    Google Scholar 

  • Kozhemyakin M, Rajasekaran K, Todorovic MS, Kowalski SL, Balint C, Kapur J (2013) Somatostatin type-2 receptor activation inhibits glutamate release and prevents status epilepticus. Neurobiol Dis 54:94–104. doi:10.1016/j.nbd.2013.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisch B (1981) Somatostatin-immunoreactive fibber projections into the brain stem and the spinal cord of the rat. Cell Tissue Res 217(3):531–552

    Article  CAS  PubMed  Google Scholar 

  • Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, Epelbaum J, Viollet C (2010) Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol 518:1976–1994. doi:10.1002/cne.22317

    Article  PubMed  Google Scholar 

  • Llona I, Eugenin J (2005) Central actions of somatostatin in the generation and control of breathing. Biol Res 38:347–352

    Article  CAS  PubMed  Google Scholar 

  • Lowe WL Jr, Schaffner AE, Roberts CT Jr, Le Roith D (1987) Developmental regulation of somatostatin gene expression in the brain is region specific. Mol Endocrinol 1(2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Martel G, Dutar P, Epelbaum J, Viollet C (2012) Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol 3:154. doi:10.3389/fendo.2012.00154

    Article  Google Scholar 

  • McGregor GP, Woodhams PL, O’Shaughnessy DJ, Ghatei MA, Polak JM, Bloom SR (1982) Developmental changes in bombesin, substance P, somatostatin and vasoactive intestinal polypeptide in the rat brain. Neurosci Lett 28(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Mellen N, Janczewski W, Bocchiaro CM, Feldman JL (2003) Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation. Neuron 37:821–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millhorn DE, Seroogy K, Hökfelt T, Schmued LC, Terenius L, Buchan A, Brown JC (1987) Neurons of the ventral medulla oblongata that contain both somatostatin and enkephalinimmunoreactivities project to nucleus tractussolitarii and spinal cord. Brain Res 424(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Molkov YI, Bacak BJ, Dick TE, Rybak I (2013) A control of breathing by interacting pontine and pulmonary feedback loops. Front Neural Circuits 7:16. doi:10.3389/fncir.2013.00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyse E, Beaudet A, Bertherat J, Epelbaum J (1992) Light microscopic radioautographic localization of somatostatin binding sites in the brainstem of the rat. J Chem Neuroanat 5(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Nattie E, Li A (2012) Central chemoreceptors: locations and functions. Compr Physiol 2(1):221–254. doi:10.1002/cphy.c100083

    PubMed  PubMed Central  Google Scholar 

  • Onimaru H, Homma I (2003) A novel functional neuron group for respiratory rhythm generation in the ventral medulla. J Neurosci 23(4):1478–1486

    CAS  PubMed  Google Scholar 

  • Pagliardini S, Ren J, Greer J (2003) Ontogeny of the pre-Bötzinger complex in perinatal rats. J Neurosci 23(29):9575–9584

    CAS  PubMed  Google Scholar 

  • Pantaleo T, Mutolo D, Cinelli E, Bongianni F (2011) Respiratory responses to somatostatin microinjections into the Bötzinger complex and the pre-Bötzinger complex of the rabbit. Neurosci Lett 498:26–30. doi:10.1016/j.neulet.2011.04.054

    Article  CAS  PubMed  Google Scholar 

  • Pascual O, Denavit-Saubié M, Dumas S, Kietzmann T, Ghilini G, Mallet J, Pequignot JM (2001) Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1α (HIF-1α) under in vivo hypoxia in rat brain. Eur J Neurosci 14:1981–1991

    Article  CAS  PubMed  Google Scholar 

  • Paton JF, Ramirez JM, Richter DW (1994) Mechanisms of respiratory rhythm generation change profoundly during early life in mice and rats. Neurosci Lett 170:167–170

    Article  CAS  PubMed  Google Scholar 

  • Pyronnet S, Bousquet C, Najib S, Azar R, Lakla H, Susini C (2008) Antitumor effects of somatostatin. Mol Cel Endocrinol 286:230–237. doi:10.1016/j.mce.2008.02.002

    Article  CAS  Google Scholar 

  • Ramirez JM, Schwarzacher SW, Pierrefiche O, Olivera BM, Richter DW (1998) Selective lesioning of the cat pre-Bötzinger complex in vivo eliminates breathing but not gas**. J Physiol 507(Pt 3):895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Jarquín J, Lara-Hernández S, López-Guerrero J, Aguileta M, Rivera-Angulo A, Sampieric A, Vacac L, Ordaza B, Peña-Ortega F (2012) Somatostatin modulates generation of inspiratory rhythms and determines asphyxia survival. Peptides 34:360–372. doi:10.1016/j.peptides.2012.02.011

    Article  PubMed  Google Scholar 

  • Schechtman VL, Harper RM, Wilson AJ, Southall DP (1991) Sleep apnea in infants who succumb to the sudden infant death syndrome. Pediatrics 87:841–846

    CAS  PubMed  Google Scholar 

  • Shimada O, Ishikawa H (1989) Somatostatin-containing neurons in the mouse brain: an immunohistochemical study and comparison with the rat brain. Arch Histol Cytol 52:201–212

    Article  CAS  PubMed  Google Scholar 

  • Shiosaka S, Takatsuki K, Sakanaka M, Inagaki S, Takagi H, Senba E, Kawai Y, Tohyama M (1981) Ontogeny of somatostatin-containing neuron system of the rat: immunohistochemical observations. J Comp Neurol 203(2):173–188

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi S, Kuriyama K, Saika T, Yoshida S, Lin I, Kitajiri M, Yamashita T, Kumazawa T, Shiosaka S (1993) Autoradiographic localization of somatostatin mRNA in the adult rat lower brainstem: observation by the double illumination technique. Neuropeptides 24:71–79

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Ellenberger H, Ballanyi K, Richter D, Feldman J (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith J, Abdala A, Borgmann A, Rybak I, Paton J (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36(3):152–162. doi:10.1016/j.tins.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  • Stornetta R, Rosin D, Wang H, Sevigny C, Weston M, Guyenet M (2003) A group of glutamatergic interneurons expressing high levels of both neurokinin-1 receptors and somatostatin identifies the region of the pre-Botzinger complex. J Comp Neurol 455:499–512

    Article  CAS  PubMed  Google Scholar 

  • Tan W, Janczewski W, Yang P, Shao X, Callaway E, Feldman J (2008) Silencing preBötzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nat Neurosci 11:538–540. doi:10.1038/nn.2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan W, Pagliardini S, Yang P, Janczewski W, Feldman J (2010) Projections of preBötzinger complex neurons in adult rats. J Comp Neurol 518:1862–1878. doi:10.1002/cne.22308

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan W, Sherman D, Turesson J, Shao XM, Janczewski WA, Feldman JL (2012) Reelin demarcates a subset of pre-Bötzinger complex neurons in adult rat. J Comp Neurol 520(3):606–619. doi:10.1002/cne.22753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuboly G, Vécsei L (2013) Somatostatin and cognitive function in neurodegenerative disorders. Mini Rev Med Chem 13:34–46

    Article  CAS  PubMed  Google Scholar 

  • Vincent SR, McIntosh CHS, Buchan AMJ, Brown JC (1985) Central somatostatin systems revealed with monoclonal antibodies. J Comp Neurol 238:169–186

    Article  CAS  PubMed  Google Scholar 

  • Viollet C, Lepousez G, Loudes C, Videau C, Simon A, Epelbaum J (2008) Somatostatinergic systems in brain: networks and functions. Mol Cell Endocrinol 286:75–87

    Article  CAS  PubMed  Google Scholar 

  • Wang TJ, Lue JH, Shieh JY, Wen CY (2000) Somatostatin-IR neurons are a major subpopulation of the cuneothalamic neurons in the rat cuneate nucleus. Neurosci Res 38(2):199–207

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Stornetta R, Rosin D, Guyenet P (2001) Neurokinin-1 receptor-immunoreactive neurons of the central respiratory group in the rat. J Comp Neurol 434:128–146

    Article  CAS  PubMed  Google Scholar 

  • Wei XY, Zhao Y, Wong-Riley MT, Ju G, Liu YY (2012) Synaptic relationship between somatostain- and neurokinin-1 receptor immunoreactive neurons in the preBötzinger complex of rats. J Neurochem 122:923–933. doi:10.1111/j.1471-4159.2012.07862.x

    Article  CAS  PubMed  Google Scholar 

  • Wynne B, Robertson D (1997) Somatostatin and substance P-like immunoreactivity in the auditory brainstem of the adult rat. J Chem Neuroanat 12(4):259–266

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Runold M, Prabhakar N, Pantaleo T (1988) Somatostatin in the control of respiration. Acta Physiol Scand 134:529–533

    Article  CAS  PubMed  Google Scholar 

  • Zeyda T, Hochgeschwender U (2008) Null mutant mouse models of somatostatin and cortistatin, and their receptors. Mol Cel Endocrinol 286:18–25. doi:10.1016/j.mce.2007.11.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Dr. Silvia Araneda. This work was funded by grants from the National Fund for Scientific and Technological Development (FONDECYT # 1000025) and Research Division of the University of Santiago (DICYT # 029843ILL # 020643LLR). JL Troc-Gajardo is a PhD candidate at the PhD Program in Neuroscience, Universidad de Santiago de Chile, and she was financed by Programa de Formación de Capital Humano Avanzado # 21130284, Comisión Nacional de Investigación Científica y Tecnológica, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Llona PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Llona, I., Farías, P., Troc-Gajardo, J.L. (2017). Early Postnatal Development of Somastostatinergic Systems in Brainstem Respiratory Network. In: von Bernhardi, R., Eugenín, J., Muller, K. (eds) The Plastic Brain. Advances in Experimental Medicine and Biology, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-319-62817-2_8

Download citation

Publish with us

Policies and ethics

Navigation