OMICs Studies and Endometriosis Biomarker Identification

  • Chapter
  • First Online:
Biomarkers for Endometriosis

Abstract

The fast development and capabilities of high-throughput ‘omics’ technologies have provided new insights into the complexity of endometriosis and enabled the identification of novel diagnostic biomarkers. In this chapter, we take a closer look at high-throughput genomics, transcriptomics, epigenomics, proteomics, and metabolomics studies applied in endometriosis research. We summarise the existing information concerning ‘omics’ studies applied to blood, endometrium, endometriotic lesions, and body fluids in order to describe the potential disease-specific biomarkers. Also, we discuss the importance of sample collection, proper study design, data processing, and analysis in high-throughput studies. And finally, future perspectives in endometriosis biomarker research will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

aCGH:

Array-based comparative genomic hybridization

CNV:

Copy number variation

CpG:

C-phosphate-G-site

2D-DIGE:

Two-dimensional difference gel electrophoresis

ESI-MS/MS:

Electrospray ionisation tandem mass spectrometry

GWAS:

Genome wide association study

H-NMR spectroscopy:

Proton nuclear magnetic resonance spectroscopy

LCM:

Laser capture microdissection

lncRNA:

Long non-coding RNA

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry

miRNome:

Full spectrum of expressed miRNAs

NMR:

Nuclear magnetic resonance spectroscopy

SCNA:

Somatic copy number alteration

SELDI-TOF-MS:

Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry

SNP:

Single nucleotide polymorphism

WERF EPHect:

World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project

References

  1. Rogers PA, D’Hooghe TM, Fazleabas A, Giudice LC, Montgomery GW, Petraglia F, et al. Defining future directions for endometriosis research: workshop report from the 2011 World Congress of Endometriosis in Montpellier, France. Reprod Sci. 2013;20(5):483–99.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nnoaham KE, Hummelshoj L, Webster P, d’Hooghe T, de Cicco NF, de Cicco NC, et al. Impact of endometriosis on quality of life and work productivity: a multicenter study across ten countries. Fertil Steril. 2011;96(2):366–73 e8.

    Google Scholar 

  3. Palmer SS, Barnhart KT. Biomarkers in reproductive medicine: the promise, and can it be fulfilled? Fertil Steril. 2013;99(4):954–62.

    Article  PubMed  Google Scholar 

  4. Gupta D, Hull ML, Fraser I, Miller L, Bossuyt PM, Johnson N, et al. Endometrial biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev. 2016;4:CD012165.

    PubMed  Google Scholar 

  5. Nisenblat V, Bossuyt PM, Shaikh R, Farquhar C, Jordan V, Scheffers CS, et al. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev. 2016;5:CD012179.

    Google Scholar 

  6. Ozdemir V, Suarez-Kurtz G, Stenne R, Somogyi AA, Someya T, Kayaalp SO, et al. Risk assessment and communication tools for genotype associations with multifactorial phenotypes: the concept of “edge effect” and cultivating an ethical bridge between omics innovations and society. Omics. 2009;13(1):43–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo SW, Wu Y, Strawn E, Basir Z, Wang Y, Halverson G, et al. Genomic alterations in the endometrium may be a proximate cause for endometriosis. Eur J Obstet Gynecol Reprod Biol. 2004;116(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  8. Li X, Zhang Y, Zhao L, Wang L, Wu Z, Mei Q, et al. Whole-exome sequencing of endometriosis identifies frequent alterations in genes involved in cell adhesion and chromatin-remodeling complexes. Hum Mol Genet. 2014;23(22):6008–21.

    Article  CAS  PubMed  Google Scholar 

  9. Izawa M, Taniguchi F, Terakawa N, Harada T. Epigenetic aberration of gene expression in endometriosis. Front Biosci (Elite Ed). 2013;5:900–10.

    Article  Google Scholar 

  10. Naqvi H, Ilagan Y, Krikun G, Taylor HS. Altered genome-wide methylation in endometriosis. Reprod Sci. 2014;21(10):1237–43.

    Article  CAS  PubMed  Google Scholar 

  11. Saare M, Modhukur V, Suhorutshenko M, Rajashekar B, Rekker K, Soritsa D, et al. The influence of menstrual cycle and endometriosis on endometrial methylome. Clin Epigenetics. 2016;8:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Houshdaran S, Nezhat CR, Vo KC, Zelenko Z, Irwin JC, Giudice LC. Aberrant endometrial DNA methylome and associated gene expression in women with endometriosis. Biol Reprod. 2016;95(5):93.

    Article  PubMed  CAS  Google Scholar 

  13. Fassbender A, Verbeeck N, Bornigen D, Kyama CM, Bokor A, Vodolazkaia A, et al. Combined mRNA microarray and proteomic analysis of eutopic endometrium of women with and without endometriosis. Hum Reprod. 2012;27(7):2020–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sherwin JR, Sharkey AM, Mihalyi A, Simsa P, Catalano RD, D’Hooghe TM. Global gene analysis of late secretory phase, eutopic endometrium does not provide the basis for a minimally invasive test of endometriosis. Hum Reprod. 2008;23(5):1063–8.

    Article  CAS  PubMed  Google Scholar 

  15. Burney RO, Talbi S, Hamilton AE, Vo KC, Nyegaard M, Nezhat CR, et al. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology. 2007;148(8):3814–26.

    Article  CAS  PubMed  Google Scholar 

  16. Absenger Y, Hess-Stumpp H, Kreft B, Kratzschmar J, Haendler B, Schutze N, et al. Cyr61, a deregulated gene in endometriosis. Mol Hum Reprod. 2004;10(6):399–407.

    Article  CAS  PubMed  Google Scholar 

  17. Kao LC, Germeyer A, Tulac S, Lobo S, Yang JP, Taylor RN, et al. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology. 2003;144(7):2870–81.

    Article  CAS  PubMed  Google Scholar 

  18. Aghajanova L, Giudice LC. Molecular evidence for differences in endometrium in severe versus mild endometriosis. Reprod Sci. 2011;18(3):229–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamaresis JS, Irwin JC, Goldfien GA, Rabban JT, Burney RO, Nezhat C, et al. Molecular classification of endometriosis and disease stage using high-dimensional genomic data. Endocrinology. 2014;55(12):4986–99.

    Article  CAS  Google Scholar 

  20. Zhou M, Fu J, **ao L, Yang S, Song Y, Zhang X, et al. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum Reprod. 2016;31(11):2598–608.

    Article  PubMed  Google Scholar 

  21. Wang Y, Li Y, Yang Z, Liu K, Wang D. Genome-wide microarray analysis of long non-coding RNAs in eutopic secretory endometrium with endometriosis. Cell Physiol Biochem. 2015;37(6):2231–45.

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Velasco JA, Fassbender A, Ruiz-Alonso M, Blesa D, D’Hooghe T, Simon C. Is endometrial receptivity transcriptomics affected in women with endometriosis? A pilot study. Reprod Biomed Online. 2015;31(5):647–54.

    Article  CAS  PubMed  Google Scholar 

  23. Ahn SH, Khalaj K, Young SL, Lessey BA, Koti M, Tayade C. Immune-inflammation gene signatures in endometriosis patients. Fertil Steril. 2016;106(6):1420–31 e7.

    Article  CAS  PubMed  Google Scholar 

  24. Suryawanshi S, Huang X, Elishaev E, Budiu RA, Zhang L, Kim S, et al. Complement pathway is frequently altered in endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2014;20(23):6163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Matsuzaki S, Canis M, Vaurs-Barriere C, Boespflug-Tanguy O, Dastugue B, Mage G. DNA microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection. Fertil Steril. 2005;84(Suppl 2):1180–90.

    Article  CAS  PubMed  Google Scholar 

  26. Giudice LC, Hamilton A, Lessey B. Transcriptomics. In Aplin JD, Fasleabas AT, Glasser SR, Giudice LC, editors. The endometrium: molecular, cellular and clinical perspectives. 2nd ed. Longon. Informa Healthcare; 2008. p. 193–222

    Google Scholar 

  27. Altmäe S, Aghajanova L. What do we know about endometrial receptivity in women with endometriosis? A molecular perspective. Reprod Biomed Online. 2015;31(5):581–3.

    Article  PubMed  Google Scholar 

  28. Burney RO, Hamilton AE, Aghajanova L, Vo KC, Nezhat CN, Lessey BA, et al. MicroRNA expression profiling of eutopic secretory endometrium in women with versus without endometriosis. Mol Hum Reprod. 2009;15(10):625–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Laudanski P, Charkiewicz R, Kuzmicki M, Szamatowicz J, Charkiewicz A, Niklinski J. MicroRNAs expression profiling of eutopic proliferative endometrium in women with ovarian endometriosis. Reprod Biol Endocrinol. 2013;11:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Laudanski P, Charkiewicz R, Tolwinska A, Szamatowicz J, Charkiewicz A, Niklinski J. Profiling of selected microRNAs in proliferative eutopic endometrium of women with ovarian endometriosis. Biomed Res Int. 2015;2015:760698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Braza-Boils A, Mari-Alexandre J, Gilabert J, Sanchez-Izquierdo D, Espana F, Estelles A, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29(5):978–88.

    Article  CAS  PubMed  Google Scholar 

  32. Shi XY, Gu L, Chen J, Guo XR, Shi YL. Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med. 2014;33(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  33. Cox J, Mann M. Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem. 2011;80:273–99.

    Article  CAS  PubMed  Google Scholar 

  34. Altmäe S, Esteban FJ, Stavreus-Evers A, Simon C, Giudice L, Lessey BA, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2014;20(1):12–28.

    Article  PubMed  Google Scholar 

  35. Fassbender A, Simsa P, Kyama CM, Waelkens E, Mihalyi A, Meuleman C, et al. TRIzol treatment of secretory phase endometrium allows combined proteomic and mRNA microarray analysis of the same sample in women with and without endometriosis. Reprod Biol Endocrinol. 2010;8:123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ning K, Fermin D, Nesvizhskii AI. Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J Proteome Res. 2012;11(4):2261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Niu Y, Feng J, Guo H, Ye X, Cui H. Use of proteomic analysis of endometriosis to identify different protein expression in patients with endometriosis versus normal controls. Fertil Steril. 2006;86(2):274–82.

    Article  CAS  PubMed  Google Scholar 

  38. Stephens AN, Hannan NJ, Rainczuk A, Meehan KL, Chen J, Nicholls PK, et al. Post-translational modifications and protein-specific isoforms in endometriosis revealed by 2D DIGE. J Proteome Res. 2010;9(5):2438–49.

    Article  CAS  PubMed  Google Scholar 

  39. Rai P, Kota V, Deendayal M, Shivaji S. Differential proteome profiling of eutopic endometrium from women with endometriosis to understand etiology of endometriosis. J Proteome Res. 2010;9(9):4407–19.

    Article  CAS  PubMed  Google Scholar 

  40. Fowler PA, Tattum J, Bhattacharya S, Klonisch T, Hombach-Klonisch S, Gazvani R, et al. An investigation of the effects of endometriosis on the proteome of human eutopic endometrium: a heterogeneous tissue with a complex disease. Proteomics. 2007;7(1):130–42.

    Article  CAS  PubMed  Google Scholar 

  41. Ten Have S, Fraser I, Markham R, Lam A, Matsumoto I. Proteomic analysis of protein expression in the eutopic endometrium of women with endometriosis. Proteomics Clin Appl. 2007;1(10):1243–51.

    Article  PubMed  CAS  Google Scholar 

  42. Ding X, Wang L, Ren Y, Zheng W. Detection of mitochondrial biomarkers in eutopic endometria of endometriosis using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Fertil Steril. 2010;94(7):2528–30.

    Article  CAS  PubMed  Google Scholar 

  43. Kyama CM, Mihalyi A, Gevaert O, Waelkens E, Simsa P, Van de Plas R, et al. Evaluation of endometrial biomarkers for semi-invasive diagnosis of endometriosis. Fertil Steril. 2011;95(4):1338–43 e1–3.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Zheng W, Ding XY, Yu JK, Jiang WZ, Zhang SZ. Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting. Fertil Steril. 2010;93(7):2460–2.

    Article  CAS  PubMed  Google Scholar 

  45. Siva AB, Srivastava P, Shivaji S. Understanding the pathogenesis of endometriosis through proteomics: recent advances and future prospects. Proteomics Clin Appl. 2014;8(1–2):86–98.

    CAS  PubMed  Google Scholar 

  46. Yang W, Zhang Y, Fu F, Li R. High-resolution array-comparative genomic hybridization profiling reveals 20q13.33 alterations associated with ovarian endometriosis. Gynecol Endocrinol. 2013;29(6):603–7.

    Article  CAS  PubMed  Google Scholar 

  47. Silveira CG, Abrao MS, Dias JA Jr, Coudry RA, Soares FA, Drigo SA, et al. Common chromosomal imbalances and stemness-related protein expression markers in endometriotic lesions from different anatomical sites: the potential role of stem cells. Hum Reprod. 2012;27(11):3187–97.

    Article  CAS  PubMed  Google Scholar 

  48. Gogusev J, Bouquet de Joliniere J, Telvi L, Doussau M, du Manoir S, Stojkoski A, et al. Detection of DNA copy number changes in human endometriosis by comparative genomic hybridization. Hum Genet. 1999;105(5):444–51.

    Article  CAS  PubMed  Google Scholar 

  49. Wu Y, Strawn E, Basir Z, Wang Y, Halverson G, Jailwala P, et al. Genomic alterations in ectopic and eutopic endometria of women with endometriosis. Gynecol Obstet Invest. 2006;62(3):148–59.

    Article  PubMed  Google Scholar 

  50. Veiga-Castelli LC, Silva JC, Meola J, Ferriani RA, Yoshimoto M, Santos SA, et al. Genomic alterations detected by comparative genomic hybridization in ovarian endometriomas. Braz J Med Biol Res. 2010;43(8):799–805.

    Article  CAS  PubMed  Google Scholar 

  51. Zafrakas M, Tarlatzis BC, Streichert T, Pournaropoulos F, Wolfle U, Smeets SJ, et al. Genome-wide microarray gene expression, array-CGH analysis, and telomerase activity in advanced ovarian endometriosis: a high degree of differentiation rather than malignant potential. Int J Mol Med. 2008;21(3):335–44.

    CAS  PubMed  Google Scholar 

  52. Saare M, Soritsa D, Vaidla K, Palta P, Remm M, Laan M, et al. No evidence of somatic DNA copy number alterations in eutopic and ectopic endometrial tissue in endometriosis. Hum Reprod. 2012;27(6):1857–64.

    Article  CAS  PubMed  Google Scholar 

  53. Karhu R, Kahkonen M, Kuukasjarvi T, Pennanen S, Tirkkonen M, Kallioniemi O. Quality control of CGH: impact of metaphase chromosomes and the dynamic range of hybridization. Cytometry. 1997;28(3):198–205.

    Article  CAS  PubMed  Google Scholar 

  54. Dyson MT, Roqueiro D, Monsivais D, Ercan CM, Pavone ME, Brooks DC, et al. Genome-wide DNA methylation analysis predicts an epigenetic switch for GATA factor expression in endometriosis. PLoS Genet. 2014;10(3):e1004158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Borghese B, Barbaux S, Mondon F, Santulli P, Pierre G, Vinci G, et al. Research resource: genome-wide profiling of methylated promoters in endometriosis reveals a subtelomeric location of hypermethylation. Mol Endocrinol. 2010;24(9):1872–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamagata Y, Nishino K, Takaki E, Sato S, Maekawa R, Nakai A, et al. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells. PLoS One. 2014;9(1):e83612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Arimoto T, Katagiri T, Oda K, Tsunoda T, Yasugi T, Osuga Y, et al. Genome-wide cDNA microarray analysis of gene-expression profiles involved in ovarian endometriosis. Int J Oncol. 2003;22(3):551–60.

    CAS  PubMed  Google Scholar 

  58. Hu WP, Tay SK, Zhao Y. Endometriosis-specific genes identified by real-time reverse transcription-polymerase chain reaction expression profiling of endometriosis versus autologous uterine endometrium. J Clin Endocrinol Metab. 2006;91(1):228–38.

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y, Kajdacsy-Balla A, Strawn E, Basir Z, Halverson G, Jailwala P, et al. Transcriptional characterizations of differences between eutopic and ectopic endometrium. Endocrinology. 2006;147(1):232–46.

    Article  CAS  PubMed  Google Scholar 

  60. Matsuzaki S, Canis M, Vaurs-Barriere C, Pouly JL, Boespflug-Tanguy O, Penault-Llorca F, et al. DNA microarray analysis of gene expression profiles in deep endometriosis using laser capture microdissection. Mol Hum Reprod. 2004;10(10):719–28.

    Article  CAS  PubMed  Google Scholar 

  61. Konno R, Yamada-Okabe H, Fujiwara H, Uchiide I, Shibahara H, Ohwada M, et al. Role of immunoreactions and mast cells in pathogenesis of human endometriosis—morphologic study and gene expression analysis. Hum Cell. 2003;16(3):141–9.

    Article  PubMed  Google Scholar 

  62. Lebovic DI, Baldocchi RA, Mueller MD, Taylor RN. Altered expression of a cell-cycle suppressor gene, Tob-1, in endometriotic cells by cDNA array analyses. Fertil Steril. 2002;78(4):849–54.

    Article  PubMed  Google Scholar 

  63. Eyster KM, Klinkova O, Kennedy V, Hansen KA. Whole genome deoxyribonucleic acid microarray analysis of gene expression in ectopic versus eutopic endometrium. Fertil Steril. 2007;88(6):1505–33.

    Article  CAS  PubMed  Google Scholar 

  64. Eyster KM, Boles AL, Brannian JD, Hansen KA. DNA microarray analysis of gene expression markers of endometriosis. Fertil Steril. 2002;77(1):38–42.

    Article  PubMed  Google Scholar 

  65. Mettler L, Salmassi A, Schollmeyer T, Schmutzler AG, Pungel F, Jonat W. Comparison of c-DNA microarray analysis of gene expression between eutopic endometrium and ectopic endometrium (endometriosis). J Assist Reprod Genet. 2007;24(6):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Khan MA, Sengupta J, Mittal S, Ghosh D. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis. Reprod Biol Endocrinol. 2012;10:84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun PR, Jia SZ, Lin H, Leng JH, Lang JH. Genome-wide profiling of long noncoding ribonucleic acid expression patterns in ovarian endometriosis by microarray. Fertil Steril. 2014;101(4):1038–46 e7.

    Article  CAS  PubMed  Google Scholar 

  68. Crispi S, Piccolo MT, D'Avino A, Donizetti A, Viceconte R, Spyrou M, et al. Transcriptional profiling of endometriosis tissues identifies genes related to organogenesis defects. J Cell Physiol. 2013;228(9):1927–34.

    Article  CAS  PubMed  Google Scholar 

  69. Monsivais D, Dyson MT, Yin P, Navarro A, Coon JS, Pavone ME, et al. Estrogen receptor beta regulates endometriotic cell survival through serum and glucocorticoid-regulated kinase activation. Fertil Steril. 2016;105(5):1266–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borghese B, Mondon F, Noel JC, Fayt I, Mignot TM, Vaiman D, et al. Gene expression profile for ectopic versus eutopic endometrium provides new insights into endometriosis oncogenic potential. Mol Endocrinol. 2008;22(11):2557–62.

    Article  CAS  PubMed  Google Scholar 

  71. Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A. 2007;104(30):12451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Monsivais D, Bray JD, Su E, Pavone ME, Dyson MT, Navarro A, et al. Activated glucocorticoid and eicosanoid pathways in endometriosis. Fertil Steril. 2012;98(1):117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hawkins SM, Creighton CJ, Han DY, Zariff A, Anderson ML, Gunaratne PH, et al. Functional microRNA involved in endometriosis. Mol Endocrinol. 2011;25(5):821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Filigheddu N, Gregnanin I, Porporato PE, Surico D, Perego B, Galli L, et al. Differential expression of microRNAs between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol. 2010;2010:369549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Saare M, Rekker K, Laisk-Podar T, Soritsa D, Roost AM, Simm J, et al. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues. PLoS One. 2014;9(11):e112630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yang RQ, Teng H, Xu XH, Liu SY, Wang YH, Guo FJ, et al. Microarray analysis of microRNA deregulation and angiogenesis-related proteins in endometriosis. Genet Mol Res. 2016;15(2).

    Google Scholar 

  78. Abe W, Nasu K, Nakada C, Kawano Y, Moriyama M, Narahara H. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013;28(3):750–61.

    Article  CAS  PubMed  Google Scholar 

  79. Hull ML, Nisenblat V. Tissue and circulating microRNA influence reproductive function in endometrial disease. Reprod Biomed Online. 2013;27(5):515–29.

    Article  PubMed  CAS  Google Scholar 

  80. Chehna-Patel N, Sachdeva G, Gajbhiye R, Warty N, Khole V. “Spot”-ting differences between the ectopic and eutopic endometrium of endometriosis patients. Fertil Steril. 2010;94(6):1964–71.

    Article  PubMed  Google Scholar 

  81. Vehmas AP, Muth-Pawlak D, Huhtinen K, Saloniemi-Heinonen T, Jaakkola K, Laajala TD, et al. Ovarian endometriosis signatures established through discovery and directed mass spectrometry analysis. J Proteome Res. 2014;13(11):4983–94.

    Article  CAS  PubMed  Google Scholar 

  82. Kasvandik S, Samuel K, Peters M, Eimre M, Peet N, Roost AM, et al. Deep quantitative proteomics reveals extensive metabolic reprogramming and cancer-like changes of ectopic endometriotic stromal cells. J Proteome Res. 2016;15(2):572–84.

    Article  CAS  PubMed  Google Scholar 

  83. Marianowski P, Szymusik I, Malejczyk J, Hibner M, Wielgos M. Proteomic analysis of eutopic and ectopic endometriotic tissues based on isobaric peptide tags for relative and absolute quantification (iTRAQ) method. Neuro Endocrinol Lett. 2013;34(7):717–21.

    CAS  PubMed  Google Scholar 

  84. Kyama CM, T’Jampens D, Mihalyi A, Simsa P, Debrock S, Waelkens E, et al. ProteinChip technology is a useful method in the pathogenesis and diagnosis of endometriosis: a preliminary study. Fertil Steril. 2006;86(1):203–9.

    Article  CAS  PubMed  Google Scholar 

  85. May KE, Conduit-Hulbert SA, Villar J, Kirtley S, Kennedy SH, Becker CM. Peripheral biomarkers of endometriosis: a systematic review. Hum Reprod Update. 2010;16(6):651–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vodolazkaia A, El-Aalamat Y, Popovic D, Mihalyi A, Bossuyt X, Kyama CM, et al. Evaluation of a panel of 28 biomarkers for the non-invasive diagnosis of endometriosis. Hum Reprod. 2012;27(9):2698–711.

    Article  CAS  PubMed  Google Scholar 

  87. Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T, et al. A genome-wide association study identifies genetic variants in the CDKN2BAS locus associated with endometriosis in Japanese. Nat Genet. 2010;42(8):707–10.

    Article  CAS  PubMed  Google Scholar 

  88. Adachi S, Tajima A, Quan J, Haino K, Yoshihara K, Masuzaki H, et al. Meta-analysis of genome-wide association scans for genetic susceptibility to endometriosis in Japanese population. J Hum Genet. 2010;55(12):816–21.

    Article  PubMed  Google Scholar 

  89. Painter JN, Anderson CA, Nyholt DR, Macgregor S, Lin J, Lee SH, et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nat Genet. 2011;43(1):51–4.

    Article  CAS  PubMed  Google Scholar 

  90. Albertsen HM, Chettier R, Farrington P, Ward K. Genome-wide association study link novel loci to endometriosis. PLoS One. 2013;8(3):e58257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pagliardini L, Gentilini D, Vigano P, Panina-Bordignon P, Busacca M, Candiani M, et al. An Italian association study and meta-analysis with previous GWAS confirm WNT4, CDKN2BAS and FN1 as the first identified susceptibility loci for endometriosis. J Med Genet. 2013;50(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  92. Sundqvist J, Xu H, Vodolazkaia A, Fassbender A, Kyama C, Bokor A, et al. Replication of endometriosis-associated single-nucleotide polymorphisms from genome-wide association studies in a Caucasian population. Hum Reprod. 2013;28(3):835–9.

    Article  CAS  PubMed  Google Scholar 

  93. Nyholt DR, Low SK, Anderson CA, Painter JN, Uno S, Morris AP, et al. Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet. 2012;44(12):1355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sapkota Y, Fassbender A, Bowdler L, Fung JN, Peterse D, O D, et al. Independent replication and meta-analysis for endometriosis risk loci. Twin Res Hum Genet. 2015:1–8.

    Google Scholar 

  95. Steinthorsdottir V, Thorleifsson G, Aradottir K, Feenstra B, Sigurdsson A, Stefansdottir L, et al. Common variants upstream of KDR encoding VEGFR2 and in TTC39B associate with endometriosis. Nat Commun. 2016;7:12350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW, Zondervan KT. Genetic variants underlying risk of endometriosis: insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 2014;20(5):702–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012;90(1):7–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Teo SM, Ku CS, Naidoo N, Hall P, Chia KS, Salim A, et al. A population-based study of copy number variants and regions of homozygosity in healthy Swedish individuals. J Hum Genet. 2011;56(7):524–33.

    Article  CAS  PubMed  Google Scholar 

  99. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–8.

    Article  CAS  PubMed  Google Scholar 

  100. Pinto D, Marshall C, Feuk L, Scherer SW. Copy-number variation in control population cohorts. Hum Mol Genet. 2007;16(Spec no. 2):R168–73.

    Google Scholar 

  101. Chettier R, Ward K, Albertsen HM. Endometriosis is associated with rare copy number variants. PLoS One. 2014;9(8):e103968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Mafra F, Mazzotti D, Pellegrino R, Bianco B, Barbosa CP, Hakonarson H, et al. Copy number variation analysis reveals additional variants contributing to endometriosis development. J Assist Reprod Genet. 2017;34(1):117–24.

    Article  PubMed  Google Scholar 

  103. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  CAS  PubMed  Google Scholar 

  104. Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther. 2009;9(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  105. Suryawanshi S, Vlad AM, Lin HM, Mantia-Smaldone G, Laskey R, Lee M, et al. Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clin Cancer Res. 2013;19(5):1213–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hsu CY, Hsieh TH, Tsai CF, Tsai HP, Chen HS, Chang Y, et al. miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J Pathol. 2014;232(3):330–43.

    Article  CAS  PubMed  Google Scholar 

  107. Jia SZ, Yang Y, Lang J, Sun P, Leng J. Plasma miR-17-5p, miR-20a and miR-22 are down-regulated in women with endometriosis. Hum Reprod. 2013;28(2):322–30.

    Article  CAS  PubMed  Google Scholar 

  108. Wang WT, Zhao YN, Han BW, Hong SJ, Chen YQ. Circulating microRNAs identified in a genome-wide serum microRNA expression analysis as noninvasive biomarkers for endometriosis. J Clin Endocrinol Metab. 2013;98(1):281–9.

    Article  CAS  PubMed  Google Scholar 

  109. Wang L, Huang W, Ren C, Zhao M, Jiang X, Fang X, et al. Analysis of serum microRNA Profile by Solexa sequencing in women with endometriosis. Reprod Sci. 2016;23(10):1359–70.

    Article  CAS  PubMed  Google Scholar 

  110. Cosar E, Mamillapalli R, Ersoy GS, Cho S, Seifer B, Taylor HS. Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril. 2016;106(2):402–9.

    Article  CAS  PubMed  Google Scholar 

  111. Fassbender A, Waelkens E, Verbeeck N, Kyama CM, Bokor A, Vodolazkaia A, et al. Proteomics analysis of plasma for early diagnosis of endometriosis. Obstet Gynecol. 2012;119(2 Pt 1):276–85.

    Article  CAS  PubMed  Google Scholar 

  112. Liu H, Lang J, Zhou Q, Shan D, Li Q. Detection of endometriosis with the use of plasma protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry. Fertil Steril. 2007;87(4):988–90.

    Article  CAS  PubMed  Google Scholar 

  113. Zheng N, Pan C, Liu W. New serum biomarkers for detection of endometriosis using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Int Med Res. 2011;39(4):1184–92.

    Article  CAS  PubMed  Google Scholar 

  114. Long X, Jiang P, Zhou L, Zhang W. Evaluation of novel serum biomarkers and the proteomic differences of endometriosis and adenomyosis using MALDI-TOF-MS. Arch Gynecol Obstet. 2013;288(1):201–5.

    Article  CAS  PubMed  Google Scholar 

  115. **g J, Qiao Y, Suginami H, Taniguchi F, Shi H, Wang X. Two novel serum biomarkers for endometriosis screened by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry and their change after laparoscopic removal of endometriosis. Fertil Steril. 2009;92(4):1221–7.

    Article  CAS  PubMed  Google Scholar 

  116. Nabeta M, Abe Y, Haraguchi R, Kito K, Kusanagi Y, Ito M. Serum anti-PDIK1L autoantibody as a novel marker for endometriosis. Fertil Steril. 2010;94(7):2552–7.

    Article  CAS  PubMed  Google Scholar 

  117. Nabeta M, Abe Y, Kagawa L, Haraguchi R, Kito K, Ueda N, et al. Identification of anti-alpha-enolase autoantibody as a novel serum marker for endometriosis. Proteomics Clin Appl. 2009;3(10):1201–10.

    Article  CAS  PubMed  Google Scholar 

  118. Nabeta M, Abe Y, Takaoka Y, Kusanagi Y, Ito M. Identification of anti-syntaxin 5 autoantibody as a novel serum marker of endometriosis. J Reprod Immunol. 2011;91(1–2):48–55.

    Article  CAS  PubMed  Google Scholar 

  119. Gajbhiye R, Sonawani A, Khan S, Suryawanshi A, Kadam S, Warty N, et al. Identification and validation of novel serum markers for early diagnosis of endometriosis. Hum Reprod. 2012;27(2):408–17.

    Article  CAS  PubMed  Google Scholar 

  120. Faserl K, Golderer G, Kremser L, Lindner H, Sarg B, Wildt L, et al. Polymorphism in vitamin D-binding protein as a genetic risk factor in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2011;96(1):E233–41.

    Article  CAS  PubMed  Google Scholar 

  121. Seeber B, Sammel MD, Fan X, Gerton GL, Shaunik A, Chittams J, et al. Proteomic analysis of serum yields six candidate proteins that are differentially regulated in a subset of women with endometriosis. Fertil Steril. 2010;93(7):2137–44.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang H, Feng J, Chang XH, Li ZX, Wu XY, Cui H. Effect of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry on identifying biomarkers of endometriosis. Chin Med J (Engl). 2009;122(4):373–6.

    CAS  Google Scholar 

  123. Wang L, Zheng W, Yu JK, Jiang WZ, Mu L, Zhang SZ. Artificial neural networks combined with surface-enhanced laser desorption/ionization mass spectra distinguish endometriosis from healthy population. Fertil Steril. 2007;88(6):1700–2.

    Article  PubMed  Google Scholar 

  124. Dutta M, Subramani E, Taunk K, Gajbhiye A, Seal S, Pendharkar N, et al. Investigation of serum proteome alterations in human endometriosis. J Proteomics. 2015;114:182–96.

    Article  CAS  PubMed  Google Scholar 

  125. El-Kasti MM, Wright C, Fye HK, Roseman F, Kessler BM, Becker CM. Urinary peptide profiling identifies a panel of putative biomarkers for diagnosing and staging endometriosis. Fertil Steril. 2011;95(4):1261–6.

    Article  CAS  PubMed  Google Scholar 

  126. Tokushige N, Markham R, Crossett B, Ahn SB, Nelaturi VL, Khan A, et al. Discovery of a novel biomarker in the urine in women with endometriosis. Fertil Steril. 2011;95(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  127. Cho S, Choi YS, Yim SY, Yang HI, Jeon YE, Lee KE, et al. Urinary vitamin D-binding protein is elevated in patients with endometriosis. Hum Reprod. 2012;27(2):515–22.

    Article  CAS  PubMed  Google Scholar 

  128. Williams KE, Miroshnychenko O, Johansen EB, Niles RK, Sundaram R, Kannan K, et al. urine, peritoneal fluid and omental fat proteomes of reproductive age women: endometriosis-related changes and associations with endocrine disrupting chemicals. J Proteomics. 2014;13:194–205.

    Google Scholar 

  129. Ametzazurra A, Matorras R, Garcia-Velasco JA, Prieto B, Simon L, Martinez A, et al. Endometrial fluid is a specific and non-invasive biological sample for protein biomarker identification in endometriosis. Hum Reprod. 2009;24(4):954–65.

    Article  CAS  PubMed  Google Scholar 

  130. Hwang JH, Oh JJ, Wang T, ** YC, Lee JS, Choi JR, et al. Identification of biomarkers for endometriosis in eutopic endometrial cells from patients with endometriosis using a proteomics approach. Mol Med Rep. 2013;8(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  131. Siciliano RA, Mazzeo MF, Spada V, Facchiano A, d’Acierno A, Stocchero M, et al. Rapid peptidomic profiling of peritoneal fluid by MALDI-TOF mass spectrometry for the identification of biomarkers of endometriosis. Gynecol Endocrinol. 2014;30(12):872–6.

    Article  CAS  PubMed  Google Scholar 

  132. Wang L, Ding XY, Yu JK, Zhang SZ, Zheng W. Biomarkers of peritoneal fluid in endometriosis identified by surface-enhanced laser desorption/ionization time-of-flight. Clin Exp Obstet Gynecol. 2014;41(1):72–4.

    CAS  PubMed  Google Scholar 

  133. Ferrero S, Gillott DJ, Remorgida V, Anserini P, Leung KY, Ragni N, et al. Proteomic analysis of peritoneal fluid in women with endometriosis. J Proteome Res. 2007;6(9):3402–11.

    Article  CAS  PubMed  Google Scholar 

  134. Ferrero S, Gillott DJ, Remorgida V, Anserini P, Ragni N, Grudzinskas JG. Peritoneal fluid proteome in women with different ASRM stages of endometriosis. Gynecol Endocrinol. 2008;24(8):433–41.

    Article  CAS  PubMed  Google Scholar 

  135. Ferrero S, Gillott DJ, Remorgida V, Anserini P, Ragni N, Grudzinskas JG. Proteomic analysis of peritoneal fluid in fertile and infertile women with endometriosis. J Reprod Med. 2009;54(1):32–40.

    CAS  PubMed  Google Scholar 

  136. Wolfler MM, Meinhold-Heerlein IM, Sohngen L, Rath W, Knuchel R, Neulen J, et al. Two-dimensional gel electrophoresis in peritoneal fluid samples identifies differential protein regulation in patients suffering from peritoneal or ovarian endometriosis. Fertil Steril. 2011;95(8):2764–8.

    Article  PubMed  CAS  Google Scholar 

  137. Williams KE, Miroshnychenko O, Johansen EB, Niles RK, Sundaram R, Kannan K, et al. Urine, peritoneal fluid and omental fat proteomes of reproductive age women: endometriosis-related changes and associations with endocrine disrupting chemicals. J Proteomics. 2015;113:194–205.

    Article  CAS  PubMed  Google Scholar 

  138. Rizner TL. Noninvasive biomarkers of endometriosis: myth or reality? Expert Rev Mol Diagn. 2014;14(3):365–85.

    Article  CAS  PubMed  Google Scholar 

  139. Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jana SK, Dutta M, Joshi M, Srivastava S, Chakravarty B, Chaudhury K. 1H NMR based targeted metabolite profiling for understanding the complex relationship connecting oxidative stress with endometriosis. Biomed Res Int. 2013;2013:329058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Dutta M, Joshi M, Srivastava S, Lodh I, Chakravarty B, Chaudhury K. A metabonomics approach as a means for identification of potential biomarkers for early diagnosis of endometriosis. Mol Biosyst. 2012;8(12):3281–7.

    Article  CAS  PubMed  Google Scholar 

  142. Vouk K, Hevir N, Ribic-Pucelj M, Haarpaintner G, Scherb H, Osredkar J, et al. Discovery of phosphatidylcholines and sphingomyelins as biomarkers for ovarian endometriosis. Hum Reprod. 2012;27(10):2955–65.

    Article  CAS  PubMed  Google Scholar 

  143. Ghazi N, Arjmand M, Akbari Z, Mellati AO, Saheb-Kashaf H, Zamani Z. (1)H NMR- based metabolomics approaches as non- invasive tools for diagnosis of endometriosis. Int J Reprod Biomed (Yazd). 2016;14(1):1–8.

    Google Scholar 

  144. Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 2014;42(14):8845–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18(1):145–53.

    Article  CAS  PubMed  Google Scholar 

  146. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Krjutskov K, Katayama S, Saare M, Vera-Rodriguez M, Lubenets D, Samuel K, et al. Single-cell transcriptome analysis of endometrial tissue. Hum Reprod. 2016;31(4):844–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kato K, Yoshimoto M, Adachi S, Yamayoshi A, Arima T, Asanoma K, et al. Characterization of side-population cells in human normal endometrium. Hum Reprod. 2007;22(5):1214–23.

    Article  CAS  PubMed  Google Scholar 

  149. Cummings M, McGinley CV, Wilkinson N, Field SL, Duffy SR, Orsi NM. A robust RNA integrity-preserving staining protocol for laser capture microdissection of endometrial cancer tissue. Anal Biochem. 2011;416(1):123–5.

    Article  CAS  PubMed  Google Scholar 

  150. Aaltonen KE, Ebbesson A, Wigerup C, Hedenfalk I. Laser capture microdissection (LCM) and whole genome amplification (WGA) of DNA from normal breast tissue—optimization for genome wide array analyses. BMC Res Notes. 2011;4:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yang H, Kang K, Cheng C, Mamillapalli R, Taylor HS. Integrative analysis reveals regulatory programs in endometriosis. Reprod Sci. 2015;22(9):1060–72.

    Article  PubMed  Google Scholar 

  152. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, et al. An atlas of combinatorial transcriptional regulation in mouse and man. Cell. 2010;140(5):744–52.

    Article  CAS  PubMed  Google Scholar 

  153. Baker M. Gene data to hit milestone. Nature. 2012;487(7407):282–3.

    Article  CAS  PubMed  Google Scholar 

  154. Jackson DH, Banks RE. Banking of clinical samples for proteomic biomarker studies: a consideration of logistical issues with a focus on pre-analytical variation. Proteomics Clin Appl. 2010;4(3):250–70.

    Article  CAS  PubMed  Google Scholar 

  155. Fassbender A, Rahmioglu N, Vitonis AF, Vigano P, Giudice LC, D'Hooghe TM, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: IV. Tissue collection, processing, and storage in endometriosis research. Fertil Steril. 2014;10(2):1244–53.

    Article  Google Scholar 

  156. Rahmioglu N, Fassbender A, Vitonis AF, Tworoger SS, Hummelshoj L, D’Hooghe TM, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonization Project: III. Fluid biospecimen collection, processing, and storage in endometriosis research. Fertil Steril. 2014;102(5):1233–43.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Becker CM, Laufer MR, Stratton P, Hummelshoj L, Missmer SA, Zondervan KT, et al. World Endometriosis Research Foundation Endometriosis Phenome and Biobanking Harmonisation Project: I. Surgical phenotype data collection in endometriosis research. Fertil Steril. 2014;102(5):1211–22.

    Article  Google Scholar 

  158. Moen MH, Halvorsen TB. Histologic confirmation of endometriosis in different peritoneal lesions. Acta Obstet Gynecol Scand. 1992;71(5):337–42.

    Article  CAS  PubMed  Google Scholar 

  159. Stegmann BJ, Sinaii N, Liu S, Segars J, Merino M, Nieman LK, et al. Using location, color, size, and depth to characterize and identify endometriosis lesions in a cohort of 133 women. Fertil Steril. 2008;89(6):1632–6.

    Article  PubMed  Google Scholar 

  160. Stratton P, Winkel C, Premkumar A, Chow C, Wilson J, Hearns-Stokes R, et al. Diagnostic accuracy of laparoscopy, magnetic resonance imaging, and histopathologic examination for the detection of endometriosis. Fertil Steril. 2003;79(5):1078–85.

    Article  PubMed  Google Scholar 

  161. Fernando S, Soh PQ, Cooper M, Evans S, Reid G, Tsaltas J, et al. Reliability of visual diagnosis of endometriosis. J Minim Invasive Gynecol. 2013;20(6):783–9.

    Article  PubMed  Google Scholar 

  162. Zondervan KT, Cardon LR, Kennedy SH. What makes a good case-control study? Design issues for complex traits such as endometriosis. Hum Reprod. 2002;17(6):1415–23.

    Article  PubMed  Google Scholar 

  163. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–71.

    Article  CAS  PubMed  Google Scholar 

  164. Chervitz SA, Deutsch EW, Field D, Parkinson H, Quackenbush J, Rocca-Serra P, et al. Data standards for Omics data: the basis of data sharing and reuse. Methods Mol Biol. 2011;719:31–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Altmäe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Saare, M., Peters, M., Aints, A., Laisk-Podar, T., Salumets, A., Altmäe, S. (2017). OMICs Studies and Endometriosis Biomarker Identification. In: D'Hooghe, T. (eds) Biomarkers for Endometriosis. Springer, Cham. https://doi.org/10.1007/978-3-319-59856-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59856-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59854-3

  • Online ISBN: 978-3-319-59856-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation