Assembly-Free Techniques for NGS Data

  • Chapter
  • First Online:
Algorithms for Next-Generation Sequencing Data

Abstract

Sequencing technologies have undergone a considerable evolution in the last decades; the first expensive machines (appearing in the late 70s) have today been substituted by cheaper and more effective ones. At the same time, data processing evolved concurrently to face new challenges and problems posed by the new type of sequencing records. In this first section, we briefly outline how such an evolution of sequencing technologies developed and how new challenges were posed by each new generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 147.69
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.1000genomes.org/.

  2. 2.

    http://ab.inf.uni-tuebingen.de/software/metasim/.

  3. 3.

    http://www-rcf.usc.edu/~fsun/Programs/D2_NGS/D2NGSmain.html.

  4. 4.

    http://flybase.org, dmel-all-intergenic-r5.49.fasta.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Article  Google Scholar 

  2. Apostolico, A.: Maximal words in sequence comparisons based on subword composition. In: Algorithms and Applications, pp. 34–44. Springer, Berlin/Heidelberg (2010)

    Google Scholar 

  3. Blaisdell, B.E.: A measure of the similarity of sets of sequences not requiring sequence alignment. Proc. Natl. Acad. Sci. 83(14), 5155–5159 (1986)

    Article  MATH  Google Scholar 

  4. Carneiro, M., Russ, C., Ross, M., Gabriel, S., Nusbaum, C., DePristo, M.: Pacific biosciences sequencing technology for genoty** and variation discovery in human data. BMC Genomics 13(1), 375 (2012)

    Article  Google Scholar 

  5. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., Tiedje, J.M.: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009)

    Article  Google Scholar 

  6. Comin, M., Antonello, M.: Fast computation of entropic profiles for the detection of conservation in genomes. In: Proceedings of Pattern Recognition in Bioinformatics PRIB. Lecture Notes in Bioinformatics, vol. 7986, pp. 277–288. Springer, Heidelberg (2013)

    Google Scholar 

  7. Comin, M., Antonello, M.: Fast entropic profiler: an information theoretic approach for the discovery of patterns in genomes. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(3), 500–509 (2014)

    Article  Google Scholar 

  8. Comin, M., Schimd, M.: Assembly-free genome comparison based on next-generation sequencing reads and variable length patterns. BMC Bioinform. 15(Suppl. 9), S1 (2014)

    Article  Google Scholar 

  9. Comin, M., Verzotto, D.: Classification of protein sequences by means of irredundant patterns. BMC Bioinform. 11, S16 (2010)

    Article  Google Scholar 

  10. Comin, M., Verzotto, D.: The irredundant class method for remote homology detection of protein sequences. J. Comput. Biol. 18(12), 1819–1829 (2011)

    Article  Google Scholar 

  11. Comin, M., Verzotto, D.: Alignment-free phylogeny of whole genomes using underlying subwords. Algorithms Mol. Biol. 7(1), 34 (2012)

    Article  Google Scholar 

  12. Comin, M., Verzotto, D.: Whole-genome phylogeny by virtue of unic subwords. In: 23rd International Workshop on Database and Expert Systems Applications (DEXA), 2012, pp. 190–194 (2012)

    Google Scholar 

  13. Comin, M., Verzotto, D.: Beyond fixed-resolution alignment-free measures for mammalian enhancers sequence comparison. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(4), 628–637 (2014)

    Article  Google Scholar 

  14. Comin, M., Leoni, A., Schimd, M.: Qcluster: extending alignment-free measures with quality values for reads clustering. In: Proceedings of the 14th Workshop on Algorithms in Bioinformatics (WABI). Lecture Notes in BIoinformatics (LNBI), vol. 8701, pp. 1–13 (2014)

    Google Scholar 

  15. Dai, Q., Wang, T.: Comparison study on k-word statistical measures for protein: from sequence to ‘sequence space’. BMC Bioinform. 9(1), 1–19 (2008)

    Article  Google Scholar 

  16. Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al.: Landscape of transcription in human cells. Nature 489(7414), 101–108 (2012)

    Article  Google Scholar 

  17. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Sharcgs, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. Genome Res. 17(11), 1697–1706 (2007)

    Article  Google Scholar 

  18. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark, S., Dalal, R., deWinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K., Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong, F., Korlach, J., Turner, S.: Real-time DNA sequencing from single polymerase molecules. Science 323(5910), 133–138 (2009)

    Google Scholar 

  19. Felsenstein, J.: PHYLIP 1984 (Phylogeny Inference Package), Version 3.5c. Department of Genetics, University of Washington, Seattle (1993)

    Google Scholar 

  20. Gao, L., Qi, J.: Whole genome molecular phylogeny of large dsdna viruses using composition vector method. BMC Evol. Biol. 7(1), 1–7 (2007)

    Article  MathSciNet  Google Scholar 

  21. Göke, J., Schulz, M.H., Lasserre, J., Vingron, M.: Estimation of pairwise sequence similarity of mammalian enhancers with word neighbourhood counts. Bioinformatics 28, 656–663 (2012)

    Article  Google Scholar 

  22. Huang, X., Yang, S.-P.: Generating a genome assembly with PCAP. Curr. Protoc. Bioinformatics 11(3), 11.3.1–11.3.23 (2005)

    Google Scholar 

  23. Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P., Zody, M.C., Lander, E.S.: Whole-genome sequence assembly for mammalian genomes: Arachne 2. Genome Res. 13(1), 91–96 (2003)

    Article  Google Scholar 

  24. Kantorovitz, M.R., Robinson, G.E., Sinha, S.: A statistical method for alignment-free comparison of regulatory sequences. Bioinformatics 23(13), i249–i255 (2007)

    Article  Google Scholar 

  25. Koboldt, D.C., Steinberg, K.M., Larson, D.E., Wilson, R.K., Mardis, E.R.: The next-generation sequencing revolution and its impact on genomics. Cell 155(1), 27–38 (2013)

    Article  Google Scholar 

  26. Lander, E.S., et al.: Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001)

    Article  Google Scholar 

  27. Li, H., Homer, N.: A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform. 11(5), 473–483 (2010)

    Article  Google Scholar 

  28. Lippert, R.A., Huang, H., Waterman, M.S.: Distributional regimes for the number of k-word matches between two random sequences. Proc. Natl. Acad. Sci. 99(22), 13980–13989 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, X., Wan, L., Li, J., Reinert, G., Waterman, M.S., Sun, F.: New powerful statistics for alignment-free sequence comparison under a pattern transfer model. J. Theor. Biol. 284(1), 106–116 (2011)

    Article  MathSciNet  Google Scholar 

  30. Metzker, M.L.: Sequencing technologies – the next generation. Nat. Rev. Genet. 11(1), 31–46 (2010)

    Article  Google Scholar 

  31. Miller, J.R., Koren, S., Sutton, G.: Assembly algorithms for next-generation sequencing data. Genomics 95(6), 315–327 (2010)

    Article  Google Scholar 

  32. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to dna fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pop, M., Salzberg, S.L.: Bioinformatics challenges of new sequencing technology. Trends Genet. 24(3), 142–149 (2008)

    Article  Google Scholar 

  34. Qi, J., Luo, H., Hao, B.: Cvtree: a phylogenetic tree reconstruction tool based on whole genomes. Nucleic Acids Res. 32(Suppl. 2), W45–W47 (2004)

    Article  Google Scholar 

  35. Reinert, G., Chew, D., Sun, F., Waterman, M.S.: Alignment-free sequence comparison (i): statistics and power. J. Comput. Biol. 16(12), 1615–1634 (2009)

    Article  MathSciNet  Google Scholar 

  36. Richter, D.C., Ott, F., Auch, A.F., Schmid, R., Huson, D.H.: Metasim—a sequencing simulator for genomics and metagenomics. PLoS ONE 3(10), e3373 (2008)

    Article  Google Scholar 

  37. Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Math. Biosci. 53(1–2), 131–147 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  39. Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74(12), 5463–5467 (1977)

    Article  Google Scholar 

  40. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J.M., Birol, I.: ABySS: a parallel assembler for short read sequence data. Genome Res. 19(6), 1117–1123 (2009)

    Article  Google Scholar 

  41. Sims, G.E., Jun, S.-R., Wu, G.A., Kim, S.-H.: Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions. Proc. Natl. Acad. Sci. 106(8), 2677–2682 (2009)

    Article  Google Scholar 

  42. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  43. Sneath, P.H.A., Sokal, R.R.: Unweighted pair group method with arithmetic mean. In: Numerical Taxonomy, pp. 230–234. W. H. Freeman, San Francisco (1973)

    Google Scholar 

  44. Song, K., Ren, J., Zhai, Z., Liu, X., Deng, M., Sun, F.: Alignment-free sequence comparison based on next-generation sequencing reads. J. Comput. Biol. 20(2), 64–79 (2013)

    Article  MathSciNet  Google Scholar 

  45. Song, K., Ren, J., Reinert, G., Deng, M., Waterman, M.S., Sun, F.: New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing. Brief. Bioinform. 15(3), 343–353 (2013). bbt067

    Google Scholar 

  46. Staden, R.: A strategy of dna sequencing employing computer programs. Nucleic Acids Res. 6(7), 2601–2610 (1979)

    Article  Google Scholar 

  47. Treangen, T.J., Salzberg, S.L.: Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13(1), 36–46 (2011)

    Google Scholar 

  48. Ulitsky, I., Burstein, D., Tuller, T., Chor, B.: The average common substring approach to phylogenomic reconstruction. J. Comput. Biol. 13(2), 336–350 (2006)

    Article  MathSciNet  Google Scholar 

  49. Vinga, S., Almeida, J.: Alignment-free sequence comparison – a review. Bioinformatics 19(4), 513–523 (2003)

    Article  Google Scholar 

  50. Wan, L., Reinert, G., Sun, F., Waterman, M.S.: Alignment-free sequence comparison (II): theoretical power of comparison statistics. J. Comput. Biol. 17(11), 1467–1490 (2010)

    Article  MathSciNet  Google Scholar 

  51. Warren, R.L., Sutton, G.G., Jones, S.J.M., Holt, R.A.: Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23(4), 500–501 (2007)

    Article  Google Scholar 

  52. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5), 821–829 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Comin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Comin, M., Schimd, M. (2017). Assembly-Free Techniques for NGS Data. In: Elloumi, M. (eds) Algorithms for Next-Generation Sequencing Data. Springer, Cham. https://doi.org/10.1007/978-3-319-59826-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59826-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59824-6

  • Online ISBN: 978-3-319-59826-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation