Insects as Beneficials

  • Chapter
  • First Online:
Why Every Fly Counts

Part of the book series: Fascinating Life Sciences ((FLS))

  • 687 Accesses

Abstract

The benefits that insects offer to nature and humans are as diverse as they are inestimable. Insects pollinate plants, thus enabling many cycles to take place in our ecosystem in the first place. They are growth accelerators and make an essential contribution to the diversity of species and habitats (the so-called biodiversity). Insects are the main food source for many animals. Especially birds and freshwater fish cannot survive without them. Insects therefore play a key role in numerous food chains. Thus, they also serve as feed for farm animals. For humans, insects produce important foodstuffs and help to improve hygiene. They even support us in the battle against themselves and also promote our economy and our society with numerous services. This chapter elaborates on the benefits the society takes from insects: pollination, plant growth, biodiversity, connection in the food chain, nutrition as food and feed, hygiene, biocide alternatives, and general support of the economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bundesamt für Naturschutz (BfN) (2009).

  2. 2.

    Jaksic-Born et al. (2006, p. 36).

  3. 3.

    Jaksic-Born et al. (2006, p. 38).

  4. 4.

    Leins and Erbar (2008).

  5. 5.

    In this book, the Latin names of the arthropods are written in italics in parentheses if they serve as a direct translation of the previously mentioned English designation. If they are written without parentheses, they specify the previously mentioned (super-ordinated in biological systematics) term. Example: The ichneumon wasp Anagyrus lopezi. Ichneumonidae is the name of a family of the Hymenoptera, in which the species Anagyrus lopezi is classified.

  6. 6.

    Klein et al. (2007a).

  7. 7.

    Food and Agriculture Organization of the United Nations (FAO) (2008).

  8. 8.

    Künast (n.d.).

  9. 9.

    Greenpeace e.V. (2013, p. 3 ff).

  10. 10.

    Klein et al. (2007b).

  11. 11.

    Bawa (1990). And: Kremen et al. (2007a).

  12. 12.

    Williams (1994). And: Aizen et al. (2009a).

  13. 13.

    Roubik (1995). And: Aizen et al. (2009a).

  14. 14.

    39 of the 57 most important forage crops are pollinated by insects. The pollinated plants correspond to 35% of the global food production. However, the plants are not exclusively pollinated by insects, so that the fraction of insects is lower than 35%. Klein et al. (2007c).

  15. 15.

    Lautenbach et al. (2012).

  16. 16.

    Kremen et al. (2007b).

  17. 17.

    Berenbaum (2001, p. 14).

  18. 18.

    Aizen et al. (2009b).

  19. 19.

    Ibidem.

  20. 20.

    Greenpeace e.V. (2013, p. 3 ff).

  21. 21.

    Schulbiologiezentrum des Landkreises Marburg-Biedenkopf (2001, p. 5 ff).

  22. 22.

    Schulbiologiezentrum des Landkreises Marburg-Biedenkopf (2001, p. 15 ff).

  23. 23.

    Beller (2006).

  24. 24.

    Berenbaum (1997, p. 160).

  25. 25.

    Europäische Kommission (2010).

  26. 26.

    Convention on Biological Diversity (2010, p. 24).

  27. 27.

    Convention on Biological Diversity (2010, p. 9).

  28. 28.

    Ibidem.

  29. 29.

    Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2007).

  30. 30.

    Bundesamt für Naturschutz (2012).

  31. 31.

    Deutsche Bundesregierung (2012).

  32. 32.

    Millennium Ecosystem Assessment (2005).

  33. 33.

    Townsend et al. (2003).

  34. 34.

    Bosch (2003). And: Bauer et al. (2011).

  35. 35.

    Adult thrushes required approx. 10% of their bodyweight in food per day. This corresponds to approx. seven grams and therefore about 1000 small insects. Melde (1991).

  36. 36.

    Löhrl (1991, p. 99).

  37. 37.

    Löhrl (1991, p. 97).

  38. 38.

    Wimmer and Zahner (2010).

  39. 39.

    Korodi Gal (1975). In: Bauer and Glutz von Blotzheim (2001).

  40. 40.

    Berenbaum (2001, p. 18).

  41. 41.

    Eckmann and Schleuter-Hofmann (2013).

  42. 42.

    Capinera (2010).

  43. 43.

    Losey and Vaughan (2006).

  44. 44.

    Klewen (1991, p. 79 ff).

  45. 45.

    Klewen (1991, p. 124 ff).

  46. 46.

    Grosse (1994, p. 169 ff).

  47. 47.

    Kuzmin (1995).

  48. 48.

    Günther (1990).

  49. 49.

    Grosse (1994, p. 89 ff).

  50. 50.

    Grosse (1994, p. 90).

  51. 51.

    Witte (1997, p. 105 ff).

  52. 52.

    Witte reports that the food demand of a mole can be estimated at 62.6% of its bodyweight. From this, the author calculated that with an average weight between 60 and 150 grams, moles must ingest approx. 50 grams of biomass. Witte (1997, p. 102).

  53. 53.

    Schober (1998, p. 29).

  54. 54.

    Schober (1998, pp. 94 and 67 ff).

  55. 55.

    An overview of the activities is provided by: Food and Agriculture Organization of the United Nations (2013, p. 35 ff).

  56. 56.

    Food and Agriculture Organization of the United Nations (2013, p. 24 ff).

  57. 57.

    A good overview of the excellent nutritional value of insects can be found in: Food and Agriculture Organization of the United Nations (2013, p. 162 ff).

  58. 58.

    Food and Agriculture Organization of the United Nations (2013, p. 68f).

  59. 59.

    Food and Agriculture Organization of the United Nations (2013, p. 73).

  60. 60.

    Food and Agriculture Organization of the United Nations (2013, p. 178 ff).

  61. 61.

    Food and Agriculture Organization of the United Nations (2013, p. 9 ff).

  62. 62.

    Wissenschaftlicher Beirat der Bundesregierung Deutschlands (2011).

  63. 63.

    Tschirner and Simon (2015).

  64. 64.

    Food and Agriculture Organization of the United Nations (2013, p. 207 ff).

  65. 65.

    Food and Agriculture Organization of the United Nations (2013, p. 95).

  66. 66.

    Food and Agriculture Organization of the United Nations (2013, p. 91).

  67. 67.

    OECD, Food and Agriculture Organization of the United Nations (2013, p. 194 ff).

  68. 68.

    Maribus et al. (2013).

  69. 69.

    OECD, Food and Agriculture Organization of the United Nations (2013, p. 194 ff).

  70. 70.

    OECD, Food and Agriculture Organization of the United Nations (2013, p. 196).

  71. 71.

    Food and Agriculture Organization of the United Nations (2013, p. 198 ff).

  72. 72.

    Bornemissza (1976). Cited in: Food and Agriculture Organization of the United Nations (2013, p. 5).

  73. 73.

    O’Toole (2000, p. 205).

  74. 74.

    Berenbaum (2001, p. 18).

  75. 75.

    Radtke (1999).

  76. 76.

    Berenbaum (1997, p. 379).

  77. 77.

    Food and Agriculture Organization of the United Nations (2013, p. 203).

  78. 78.

    Berenbaum (2001, p. 20).

  79. 79.

    O’Toole (2000, p. 200).

  80. 80.

    Berenbaum (1997, p. 230).

  81. 81.

    Berenbaum (1997, p. 230 ff).

  82. 82.

    Cerutti (2011, p. 37 ff).

  83. 83.

    Cerutti (2011, p. 70).

  84. 84.

    Berenbaum (1997, p. 232).

  85. 85.

    Jehle et al. (2013, p. 33 ff).

  86. 86.

    Schneller (2009).

  87. 87.

    Al-Kirshi (1998).

  88. 88.

    Bär (2009).

  89. 89.

    Berenbaum (1997, p. 189).

  90. 90.

    Myers et al. (2008).

  91. 91.

    Food and Agriculture Organization of the United Nations (2013, p. 215).

  92. 92.

    Henneman and Memmott (2001).

  93. 93.

    Peck et al. (2008).

  94. 94.

    Aukema et al. (2011).

  95. 95.

    Tobin et al. (2012).

  96. 96.

    Elkinton and Boettner (2004). Also: Wagner (2012).

  97. 97.

    Story (1984).

  98. 98.

    Pearson et al. (1999).

  99. 99.

    Pearson and Caalawy (2006).

  100. 100.

    Centers for Disease Control and Prevention (2015).

  101. 101.

    Cerutti (2011, p. 45 f).

  102. 102.

    Peters (2013).

  103. 103.

    The dung beetle Scarabaeus satyrus uses the sun as orientation in the daytime, and the moon at night. Researchers were now able to observe that on moonless nights, the beetles are capable of orientating themselves using the stars in the Milky Way. Source: Dacke et al. (2013).

  104. 104.

    Glowing Plant (2015).

  105. 105.

    There are numerous publications on this topic. A few representatives are mentioned here: Hölldobler and Wilson (2013). And: Wilson (2013). And: Werber (2013).

  106. 106.

    Berenbaum (2001, p. 20).

  107. 107.

    Berenbaum (2001, p. 18).

  108. 108.

    Yong-Woo (1999).

  109. 109.

    Vasisht and Kumar (2004).

  110. 110.

    WHO (2003).

  111. 111.

    WHO (2013).

  112. 112.

    Own calculation based on Vasisht and Kumar, who already indicated a global market volume of 60 billion US dollars in 2004. Vasisht and Kumar (2004). And: WHO (2003).

  113. 113.

    O’Toole (2000, p. 209).

  114. 114.

    Rufli (2002).

  115. 115.

    Berenbaum (1997, p. 179 ff).

  116. 116.

    Verband der deutschen Lack- und Druckfarbenindustrie e.V. (2014).

  117. 117.

    Markus (2014).

  118. 118.

    Ibidem.

  119. 119.

    Food and Agriculture Organization of the United Nations (2013, p. 93).

References

  • Aizen, M. A., et al. (2009). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103(9), 1579–1588.

    Article  Google Scholar 

  • Aizen, M. A., et al. (2009b). How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Annals of Botany, 103, 1579 ff.

    Google Scholar 

  • Al-Kirshi, A. G. S. (1998). Untersuchungen zur biologischen Bekämpfung von Trogoderma granarium EVERTS, Trogoderma angustum (SOLIER) und Anthre- nus ver-basci L. (Coleoptera, Dermestidae) mit dem Larvalparasitoiden Laelius pedatus (SAY) (Hymenoptera, Bethylidae) (p. 3 ff). Dissertation Humboldt-Universität zu Berlin.

    Google Scholar 

  • Aukema, J. E., et al. (2011). Economic impacts of non-native forest insects in the continental United States. PLoS ONE, 6(9), e24587. doi:10.1371/journal.pone.0024587

  • Bär, M. (2009). Nützlinge für den Vorratsschutz. In: bioaktuell 2/09 (p. 4 ff).

    Google Scholar 

  • Bauer, K. M., Glutz von Blotzheim, U. N. (2001). Handbuch der Vögel Mitteleuropas (pp. 329–336).

    Google Scholar 

  • Bauer, H. G., et al. (2011). Das Kompendium der Vögel Mitteleuropas. Ein umfassendes Handbuch zu Biologie, Gefährdung und Schutz (p. 745). Wiebelsheim: AULA-Verlag.

    Google Scholar 

  • Bawa, K. S. (1990). Plant–pollinator interactions in tropical rainforests. Annual Review of Ecology and Systematics, 21, 299–422.

    Google Scholar 

  • Beller, J. (2006). Bodeneigenschaften und Insekten/Spinnen. In Bodenschutz – eine Aufgabe des Naturschutzes? (p. 5).

    Google Scholar 

  • Berenbaum, M. R. (1997). Blutsauger, Staatsgründer, Seidenfabrikanten. Die zwiespältige Beziehung zwischen Mensch und Insekt. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Berenbaum, M. (2001, July). Unerwarteter Weltuntergang. Was geschähe, wenn plötzlich alle Insekten aussterben würden? In Neue Züricher Zeitung Folio (p. 14).

    Google Scholar 

  • Bornemissza, G. F. (1976). The Australian dung beetle project 1965–1975. Australian Meat Research Committee Review, 30, 1–30.

    Google Scholar 

  • Bosch, S. (2003). Segler am Sonnenhimmel (p. 32). Niebüll: Verlag Videel.

    Google Scholar 

  • Bundesamt für Naturschutz (BfN). (2009). Blütenbestäuber und Biodiversität. www.bfn.de/0326_bestaeuber.html. Accessed August 25, 2014.

  • Bundesamt für Naturschutz. (2012). Hintergrundinfo: Naturschutz/Biologische Vielfalt/Daten zur Natur, 20 Jahre nach Rio: Daten zur Natur ermöglichen Standortbestimmung zu Schutz und Entwicklung der biologischen Vielfalt (p. 4). Bonn: Bundesamt für Naturschutz.

    Google Scholar 

  • Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. (2007). Nationale Strategie zur biologischen Vielfalt (p. 17). Berlin: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit.

    Google Scholar 

  • Capinera, J. L. (2010). Insects and wildlife. Arthropods and their relationships with wild vertebrate animals (p. 152 ff). Oxford: Wiley-Blackwell.

    Google Scholar 

  • Centers for Disease Control and Prevention. (2015). Annual U.S. HPS Cases and Case-fatality, 1993–2013. www.cdc.gov/hantavirus/surveillance/annual-cases.html. Accessed October 26, 2015.

  • Cerutti, H. (2011). Wie Hans Rudolf Herren 20 Millionen Menschen rettete. Die ökologische Erfolgsstory eines Schweizers (p. 37 ff). Zürich: Orell Füssli Verlag.

    Google Scholar 

  • Convention on Biological Diversity. (2010). Global Biodiversity Outlook 3. Montreal: Secretariat of Convention on Biological.

    Google Scholar 

  • Dacke, M., et al. (2013). Dung beetles use the Milky Way for orientation. Current Biology, 23(4), 298 ff (Elsevier).

    Google Scholar 

  • Deutsche Bundesregierung. (2012). Nationale Nachhaltigkeitsstrategie, Fortschrittsbericht 2012 (p. 71 f). Berlin.

    Google Scholar 

  • Eckmann, R., & Schleuter-Hofmann, D. (2013). Der Flussbarsch - Perca fluviatilis: Biologie, Ökologie und fischereiliche Nutzung (p. 74). Hohenwarsleben: Westarp-Wissenschaft.

    Google Scholar 

  • Elkinton, J. S., & Boettner, G. H. (2004). The effects of Compsilura concinnata, an introduced generalist tachinid, on the non-target species in North America: A cautionary tale. In R. van Driesche & T. Murray (Eds.), Assessing host ranges of parasitoids and predators (p. 4 ff). US Forest Service Gen Tech Bull.

    Google Scholar 

  • Europäische Kommission. (2010). Optionen für ein Biodiversitätskonzept und Bio-diversitätsziel der EU für die Zeit nach 2010. Mitteilung der Kommission an das Europäische Parlament, den Rat, den Europäischen Wirtschafts- und Sozialausschuss und den Ausschuss der Regionen (p. 2). Brüssel: Europäische Kommission.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. (2013). Edible insects. Future prospects for food and feed security. FAO: Rome.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2008). Rapid Assessment of Pollinators’ Status. A contribution to the international initiative for the conversation and sustainable use of pollinators (p. 5). Rome: FAO.

    Google Scholar 

  • Glowing Plant. (2015). Natural lighting without electricity. www.glowingplant.com. Accessed August 13, 2015.

  • Greenpeace e.V. (2013). Bye Bye Biene? Das Bienensterben und die Risiken für die Landwirtschaft in Europa. Hamburg: Greenpeace e.V.

    Google Scholar 

  • Grosse, W. R. (1994). Der Laubfrosch. Hyla arborea (p. 169 ff). Magdeburg: Westarp-Wissenschaften.

    Google Scholar 

  • Günther, R. (1990). Die Wasserfrösche Europas. Anura-Froschlurche (p. 91). Wittenberg Lutherstadt: Ziemsen Verlag.

    Google Scholar 

  • Henneman, M. L., & Memmott, J. (2001, August 8). Infiltration of a Hawaiian community by introduced biological control agents. Science, 293, 1314 ff.

    Google Scholar 

  • Hölldobler, B., & Wilson, E. (2013). Der Superorganismus. Der Erfolg von Ameisen, Bienen, Wespen und Termiten (p. 1 ff). Berlin: Springer.

    Google Scholar 

  • Jaksic-Born, C., et al. (2006). Natura. Grundlagen der Biologie für Schweizer Maturi-tätsschulen (p. 36). Zug: Klett und Balmer Verlag.

    Google Scholar 

  • Jehle, J. A., et al. (2013). Statusbericht Biologischer Pflanzenschutz 2013 (p. 33 ff). Braunschweig: Julis Kühn Institut.

    Google Scholar 

  • Klein, A.-M., et al. (2007a). Importance of pollinators in changing landscapes for world crop. Proceedings of the Royal Society B, Biological Science, 274(1608), 304.

    Article  Google Scholar 

  • Klein, A.-M., et al. (2007b). Importance of pollinators in changing landscapes for world crop. Proceedings of the Royal Society B, Biological Science, 274(1608), 303 ff.

    Google Scholar 

  • Klein, A.-M., et al. (2007b). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, Biological Science, 274(1608), 306.

    Article  Google Scholar 

  • Klewen, R. (1991). Landsalamander Europa: 1. Die Gattungen Salamandra und Mertensiella (2nd ed., p. 79 ff). Wittenberg Lutherstadt: Ziemsen-Verlag.

    Google Scholar 

  • Korodi Gal, I. (1975). Contribuții la cunoașterea biologiei reproducerii și hranei puilor la ghionoaia verde (Picus viridis L.). Muzeul Brukenthal. Studii și Comunicări. Științele Naturii, 19.

    Google Scholar 

  • Kremen, C., et al. (2007a). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 10(4), 299–314, 306.

    Google Scholar 

  • Kremen, C., et al. (2007). Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters., 10, 299.

    Article  Google Scholar 

  • Künast, C. (n.d.). Blütenbestäuber brauchen mehr Lebensraum. Wie Eh da-Flächen die biologische Vielfalt fördern können. Berlin: Fördergemeinschaft Nachhaltige Landwirtschaft e.V. (FNL) Initiative “Innovation & Naturhaushalt”, p. 11.

    Google Scholar 

  • Kuzmin, S. L. (1995). Die Amphibien Russlands und angrenzender Gebiete (p. 170 ff). Magdeburg: Westarp-Wissenschaften.

    Google Scholar 

  • Lautenbach, S., et al. (2012). Spatial and temporal trends of global pollination benefit. PLoS ONE, 7(4), e35954. doi:10.1371/journal.pone.0035954

    Article  Google Scholar 

  • Leins, P., & Erbar, C. (2008). Blüte und Frucht. Aspekte der Morphologie, Entwick- lungsgeschichte, Phylogenie, Funktion und Ökologie (2 revised ed.). Stuttgart: Schweizerbart‘sche Verlagsbuchhandlung.

    Google Scholar 

  • Löhrl, H. (1991). Die Haubenmeise. Parus cristatus. Wittenberg Lutherstadt: Ziemsen Verlag.

    Google Scholar 

  • Losey, J. E., Vaughan, M. (2006). The economic value of ecological services provided by insects. Bioscience, 56, 311 ff.

    Google Scholar 

  • Maribus et al. (Ed.). (2013). Die Zukunft der Fische – die Fischerei der Zukunft (p. 85). Hamburg: Maribus.

    Google Scholar 

  • Markus, M. (2014). Unsere Welt ohne Insekten? Ein Teil der Natur verschwindet (p. 21). Stuttgart: Franck-Kosmos Verlag.

    Google Scholar 

  • Melde, M. (1991). Die Singdrossel. Turdus philomelos (p. 79 ff). Wittenberg Lutherstadt: Ziemsen Verlag.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Biodiversity synthesis (p. 3 f). Washington, D.C.: World Resources Institute.

    Google Scholar 

  • Myers, H. M., et al. (2008). Development of Black Soldier Fly (Diptera: Stratiomyidae) Larvae Fed Dairy Manure. Environmental Entomology, 37(1), 11.

    Article  Google Scholar 

  • OECD, Food and Agriculture Organization of the United Nations. (2013). OECD—FAO Agricultural Outlook 2013–2022. OECD/FAO: Highlights. O.O.

    Google Scholar 

  • O’Toole, C. (2000). Faszinierende Insekten. Wunder und Rätsel einer fremden Welt (p. 205). Augsburg: Weltbild Verlag.

    Google Scholar 

  • Pearson, D. E., & Caalawy, R. M. (2006). Biological control agents elevate hnatavirus by subsidizing deer mouse populations. Ecology Letters, 9, 443.

    Article  Google Scholar 

  • Pearson, D. E., McKelvey, K. S., & Ruggiero, L. F. (1999). Non-target effects of an introduced biological control agent on deer mouse ecology. In Oecologia (2000) (Vol. 122, p. 122). Springer.

    Google Scholar 

  • Peck, R. W., et al. (2008). Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island. In Biol Invasions (Vol. 10, p. 1452). Springer Science+Business Media B.V.

    Google Scholar 

  • Peters, M. (2013). Application of edible insects: Insects as the missing link in de-signing a circular economy. In: Edible insects. Future prospects for food and feed security (p. 114 f). Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Radtke, O. A. (1999). Die Insekten als ständige Mit- und Gegenspieler des Menschen. In BIOkular (p. 6).

    Google Scholar 

  • Roubik, D. W. (1995). Pollination of cultivated plants in the tropics. In FAO Agricultural Services Bulletin (Vol. 118). Rome: FAO.

    Google Scholar 

  • Rufli, T. (2002, July 26). Biochirurgie, bewährtes Verfahren in der Wundbehandlung. Deutsches Ärzteblatt, 30, A 2038.

    Google Scholar 

  • Schneller, H. (2009). Biologische Schädlingsbekämpfung mit Nützlingen (p. 8). Presentation on 2.2.2009. Augustenberg: Landwirtschaftliches Technologiezentrum.

    Google Scholar 

  • Schober, W. (1998). Die Hufeisennase: Rhinolophidae (p. 29). Hohenwarsleben: Westarp-Wissenschaften.

    Google Scholar 

  • Schulbiologiezentrum des Landkreises Marburg-Biedenkopf. (2001). Praxiskauz 2. Wir untersuchen den Lebensraum Boden. Tiere in der Laub- und Nadelstreu (3rd ed.). Marburg: Arbeitshilfe zur Umwelterziehung, Schulbiologiezentrum des Landkreises Marburg-Biedenkopf.

    Google Scholar 

  • Story, J. M. (1984). Status of Biological Weed Control in Montana. In E. S. Delfosse (Ed.), VI. International Symposium Biological Control Weeds, 19–25 August 1984 (p. 838). Vancouver, Canada: Agriculture Canada.

    Google Scholar 

  • Tobin, P. C., et al. (2012, July–September). The ecology, geopolotocs, and economics of managing Lymantria dispar in the United States. International Journal of Pest Management, 58(3), 195 ff.

    Google Scholar 

  • Townsend, C. R., et al. (2003). Ökologie (2nd ed., p. 391 ff). Berlin: Springer.

    Google Scholar 

  • Tschirner, M., & Simon A. (2015). Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. Wageningen Academic Publishers Journal of Insects as Food and Feed, 1.

    Google Scholar 

  • Vasisht, K., & Kumar, V. (2004). Africa, Compendium of medicinal and aromatic Plants (p. 1). Trieste: United Nations Industrial Development Organization and the International Centre for Science and High Technology.

    Google Scholar 

  • Verband der deutschen Lack- und Druckfarbenindustrie e.V. (2014). Jahresbericht 2012/2013 (p. 34 ff). Frankfurt am Main: Verband der deutschen Lack- und Farbenindustrie e.V.

    Google Scholar 

  • Wagner, D. L. (2012). Moth decline in the Northeastern United States. News of the Lepidopterists’ Society, 42(2), 52ff.

    Google Scholar 

  • Werber, N. (2013). Ameisengesellschaften. Eine Faszinationsgeschichte (p. 1 ff). Frankfurt: S. Fischer Verlag.

    Google Scholar 

  • WHO. (2003). Traditional medicine. Fact sheet No. 134. www.who.int/mediacentre/factsheets/2003/fs134/en/. Accessed August 7, 2015.

  • WHO. (2013). WHO traditional medicine strategy 2014–2023 (p. 25 ff). Geneva: WHO.

    Google Scholar 

  • Wilson, E. O. (2013). Die soziale Eroberung der Erde. Eine biologische Geschichte des Menschen (p. 1 ff). Munich: Verlag Beck.

    Google Scholar 

  • Williams, I. H. (1994). The dependence of crop production within the European Union on pollination by honey bees. Agricultural Zoology Reviews, 6, 229–257.

    Google Scholar 

  • Wimmer, N., & Zahner, V. (2010). Spechte. Ein Leben in der Vertikalen (p. 22 ff). Karlsruhe: G. Braun Buchverlag.

    Google Scholar 

  • Witte, G. R. (1997). Der Maulwurf. Talpa europaea. Magdeburg: Westarp-Wissenschaften.

    Google Scholar 

  • Wissenschaftlicher Beirat der Bundesregierung Deutschlands. (2011). Welt im Wandel, Gesellschaftsvertrag für eine große Transformation (p. 4 f). Berlin.

    Google Scholar 

  • Yong-Woo, L. (1999). Silk reeling and testing manual. In: FAO Agricultural services bulletin No. 136 (p. 1 ff). Rome: FAO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dietrich Reckhaus .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reckhaus, HD. (2017). Insects as Beneficials. In: Why Every Fly Counts. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-58765-3_2

Download citation

Publish with us

Policies and ethics

Navigation