Genomic Variant Classifier Tool

  • Conference paper
  • First Online:
Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016 (IntelliSys 2016)

Abstract

The exome or genome based high throughput screening techniques are becoming a definitive criterion in the conventional clinical analysis of the genetic diseases. However, pathogenic classification of an identified variant, is still a manual and time consuming process for clinical geneticists. Thus, to facilitate the variant classification process, we have developed GeVaCT, a Java based tool that implements a classification approach based on the literature review of cardiac arrhythmia syndromes. Furthermore, the adoption of this automated knowledge engineer by the clinical geneticists will aid to build a knowledge base for the evolution of the variant classification process by use of novel machine learning approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saunders, C.J., et al.: Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Transl. Med. 4, 135–154 (2012)

    Article  Google Scholar 

  2. Hofman, N., et al.: Yield of molecular and clinical testing for arrhythmia syndromes: report of a 15 years’ experience. Circulation 1513–1521 (2013)

    Google Scholar 

  3. Schulze-Bahr, E., et al.: Molecular genetics of arrhythmias – a new paradigm. Z Kardiol. 89(4), IV12–IV22 (2000)

    Google Scholar 

  4. Wilde, A.A.M., Tan, H.L.: Inherited arrhythmia syndromes. Circ. J. 71(Supplement A), A12–A19 (2007)

    Article  Google Scholar 

  5. Stenson, P.D., et al.: Human gene mutation database HGMD: 2003 update. Hum. Mutat. 21(6), 577–581 (2003)

    Article  Google Scholar 

  6. Landrum, M.J., et al.: ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 42(D1), D980–D985 (2014)

    Article  Google Scholar 

  7. Sherry, S.T., et al.: dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29(1), 308–311 (2001)

    Article  MathSciNet  Google Scholar 

  8. Adzhubei, I.A., et al.: A method and server for predicting damaging missense mutations. Nat. Methods 7(4), 248–249 (2010)

    Article  Google Scholar 

  9. Kumar, P., Henikoff, S., Ng, P.C.: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4(7), 1073–1081 (2009)

    Article  Google Scholar 

  10. Mathe, E., et al.: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 34(5), 1317–1325 (2006)

    Article  Google Scholar 

  11. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., Siepel, A.: Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20(1), 110–121 (2010)

    Article  Google Scholar 

  12. Exome Aggregation Consortium (2015). http://exac.broadinstitute.org

  13. Desmet, F.-O., et al.: Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 37(9), e67 (2009)

    Article  MathSciNet  Google Scholar 

  14. Plon, S.E., et al.: Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29(11), 1282–1291 (2008)

    Article  Google Scholar 

  15. Waterman, D.A., Hayes-Roth, F.: An Investigation of Tools for Building Expert Systems, vol. 116. Addison-Wesley, Reading (1983)

    Google Scholar 

  16. Witten, I.H., Frank, E., Hall, M.A.: Data Mining Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, Los Altos (2011)

    Google Scholar 

  17. Grau, I., et al.: GeVaCT: Genomic Variant Classifier Tool. http://bridgeiris.ulb.ac.be:81/gevact/

Download references

Acknowledgments

The authors acknowledge the support of the BridgeIRIS project funded by INNOVIRIS, Brussels, Belgium and the Cuba-Flanders VLIR Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isel Grau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Grau, I. et al. (2018). Genomic Variant Classifier Tool. In: Bi, Y., Kapoor, S., Bhatia, R. (eds) Proceedings of SAI Intelligent Systems Conference (IntelliSys) 2016. IntelliSys 2016. Lecture Notes in Networks and Systems, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-56994-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56994-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56993-2

  • Online ISBN: 978-3-319-56994-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation