Competitor–Competitor–Mutualist Systems

  • Chapter
  • First Online:
Dynamical Systems in Population Biology

Part of the book series: CMS Books in Mathematics ((CMSBM))

  • 2425 Accesses

Abstract

In order to model mutualism phenomena in population biology, Rai et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N.D. Alikakos, An application of the invariance principle to reaction–diffusion equations. J. Differ. Equ. 33, 201–225 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Blat, K.J. Brown, Bifurcation of steady-state solutions in predator–prey and competition systems. Proc. R. Soc. Edinb. 97A, 21–34 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. K.J. Brown, P. Hess, Positive periodic solutions of predator–prey reaction–diffusion systems. Nonlin. Anal. TMA 16, 1147–1158 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Du, Positive periodic solutions of a competitor–competitor–mutualist model. Differ. Integral Equ. 9, 1043–1066 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Y. Du, K.J. Brown, Bifurcation and monotonicity in competition reaction-diffusion systems. Nonlinear Anal. TMA 23, 1–13 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Henry, Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840 (Springer, Berlin, 1981)

    Google Scholar 

  8. P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Research Notes in Mathematics Series, vol. 247 (Longman Scientific and Technical, Harlow, 1991)

    Google Scholar 

  9. V. Hutson, K. Mischaikow, P. Polác̆ik, The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)

    Google Scholar 

  10. V. Hutson, W. Shen, G.T. Vickers, Estimates for the principal spectrum point for certain time-dependent parabolic operators. Proc. Am. Math. Soc. 129, 1669–1679 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Liang, J. Jiang, Discrete infinite dimensional type-K monotone dynamical systems and time-periodic reaction–diffusion systems. J. Differ. Equ. 189, 318–354 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Lu, B.D. Sleeman, Maximum principles and comparison theorems for semilinear parabolic systems and their applications. Proc. R. Soc. Edinb. Sect. A 123, 857–885 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. C.V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions. J. Math. Anal. Appl. 234, 695–716 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. C.V. Pao, Periodic solutions of parabolic systems with time delays. J. Math. Anal. Appl. 251, 251–263 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer, New York, 1984)

    Book  MATH  Google Scholar 

  16. P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Rai, H.I. Freedman, J.F. Addicott, Analysis of three species models of mutualism in predator–prey and competitive systems. Math. Biosci. 65, 13–50 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Smoller, Shock Waves and Reaction–Diffusion Equations (Springer, Berlin, 1983)

    Book  MATH  Google Scholar 

  19. A. Tineo, Asymptotic behavior of solutions of a periodic reaction–diffusion system of a competitor–competitor–mutualist model. J. Differ. Equ. 108, 326–341 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. X.-Q. Zhao, Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications. Can. Appl. Math. Q. 3, 473–495 (1995)

    MathSciNet  MATH  Google Scholar 

  21. X.-Q. Zhao, Global asymptotic behavior in a periodic competitor–competitor–mutualist parabolic system. Nonlinear Anal. TMA 29, 551–568 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Zheng, A reaction–diffusion system of a competitor–competitor–mutualist model. J. Math. Anal. Appl. 124, 254–280 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. L. Zhou, Y. Fu, Existence and stability of periodic quasisolutions in nonlinear parabolic systems with discrete delayes. J. Math. Anal. Appl. 250, 139–161 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhao, XQ. (2017). Competitor–Competitor–Mutualist Systems. In: Dynamical Systems in Population Biology. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-56433-3_7

Download citation

Publish with us

Policies and ethics

Navigation