The Theory of Basic Reproduction Ratios

  • Chapter
  • First Online:
Dynamical Systems in Population Biology

Part of the book series: CMS Books in Mathematics ((CMSBM))

Abstract

The basic reproduction number (ratio) R 0 is one of the most important concepts in population biology, see, e.g., [16, 94, 148, 149, 78] and the references therein. In epidemiology, R 0 is the expected number of secondary cases produced, in a completely susceptible population, by a typical infective individual during the infectious period, and R 0 is also a commonly used measure of the effort needed to control an infectious disease. Diekmann, Heesterbeek and Metz [95] introduced the next generation matrices (NGM) approach to R 0 for models of infectious diseases in heterogeneous populations; van den Driessche and Watmough [376] developed the theory of R 0 for autonomous ordinary differential equations (ODE) models with compartmental structure; and Diekmann, Heesterbeek and Roberts [96] provided a recipe for the construction of the NGM for compartmental epidemic models. These works have found numerous applications in the study of various models of infectious diseases. For population models in a periodic environment, Bacaër and Guernaoui [24] proposed a general definition of R 0, that is, R 0 is the spectral radius of an integral operator on the space of continuous periodic functions. Wang and Zhao [388] characterized R 0 for periodic compartmental ODE models and proved that it is a threshold parameter for the local stability of the disease-free periodic solution. Further, Thieme [370] presented the theory of spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. Bacaër and Ait Dads [22, 23] also found a more biological interpretation of R 0 for periodic models and showed that it is the asymptotic ratio of total infections in two successive generations of the infection tree. Recently, Inaba [189] introduced the concept of a generation evolution operator to give a new definition of R 0 for structured populations in heterogeneous environments, which unifies two definitions in [95, 24] and has intuitively clear biological meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.J.S. Allen, B.M. Bolker, Y. Lou, A.L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Cont. Dyn. Syst. 21, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991)

    Google Scholar 

  3. N. Bacaër, E.H. Ait Dads, Genealogy with seasonality, the basic reproduction number, and the influenza pandemic. J. Math. Biol. 62, 741–762 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bacaër, E.H. Ait Dads, On the biological interpretation of a definition for the parameter R 0 in periodic population models. J. Math. Biol. 65, 601–621 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Bacaër, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality. J. Math. Biol. 53, 421–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Bai, Threshold dynamics of a time-delayed SEIRS model with pulse vaccination. Math. Biosci. 269, 178–185 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach spaces. Arch. Math. 56, 49–57 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Busenberg, K.L. Cooke, The effect of integral conditions in certain equations modelling epidemics and population growth. J. Math. Biol. 10, 13–32 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. J.M. Cushing, O. Diekmann, The many guises of R 0 (a didactic note). J. Theor. Biol. 404, 295–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Daners, P.K. Medina, Abstract Evolution Equations, Periodic Problems and Applications. Pitman Research Notes in Mathematics Series, vol. 279 (Longman Scientific and Technical, 1992)

    Google Scholar 

  11. G. Degla, An overview of semi-continuity results on the spectral radius and positivity. J. Math. Anal. Appl. 338, 101–110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. W. Desch, W. Schappacher, Linearized stability for nonlinear semigroups, in Differential Equations in Banach Spaces, ed. by A. Favini, E. Obrecht. Lecture Notes in Mathematics, vol. 1223 (Springer, Berlin/Heidelberg, 1986), pp. 61–67

    Google Scholar 

  13. O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation (Wiley, Chichester, 2000)

    MATH  Google Scholar 

  14. O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz, On the definition and the computation of the basic reproduction ratio R 0 in the models for infectious disease in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Diekmann, J.A.P. Heesterbeek, M.G. Roberts, The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010)

    Article  Google Scholar 

  16. Z. Guo, F.-B. Wang, X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math. Biol. 65, 1387–1410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.K. Hale, Asymptotic Behavior of Dissipative Systems. Mathematical Surveys and Monographs, vol. 25 (American Mathematical Society, Providence, RI, 1988)

    Google Scholar 

  18. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)

    Book  MATH  Google Scholar 

  19. J.A.P. Heesterbeek, A brief history of R 0 and a recipe for its calculation. Acta Biotheor. 50, 189–204 (2002)

    Article  Google Scholar 

  20. J.M. Heffernan, R.J. Smith, L.M. Wahl, Perspectives on the basic reproductive ratio. J. R. Soc. Interface 2, 281–293 (2005)

    Article  Google Scholar 

  21. P. Hess, On the eigenvalue problem for weakly coupled elliptic systems. Arch. Ration. Mech. Anal. 81, 151–159 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. S.-B. Hsu, F.-B. Wang, X.-Q. Zhao, Global dynamics of zooplankton and harmful algae in flowing habitats. J. Differ. Equ. 255, 265–297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Q. Huang, Y. **, M. A. Lewis, R 0 analysis of a benthic-drift model for a stream population. SIAM J. Appl. Dyn. Syst. 15, 287–321 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Inaba, On a new perspective of the basic reproduction number in heterogeneous environments. J. Math. Biol. 65, 309–348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin/Heidelberg, 1976)

    Book  MATH  Google Scholar 

  26. A. Korobeinikov, P.K. Maini, Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128 (2005)

    Article  MATH  Google Scholar 

  27. X. Liang, X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60, 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. X. Liang, X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Lou, X.-Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin. Dyn. Syst. Ser. B 12, 169–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Lou, X.-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62, 543–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Lou, X.-Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations. J. Nonlinear Sci. 27, 573–603 (2017)

    Article  MathSciNet  Google Scholar 

  32. H.W. Mckenzie, Y. **, J. Jacobsen, M.A. Lewis, R 0 analysis of a spatiotemporal model for a stream population. SIAM J. Appl. Dyn. Syst. 11, 567–596 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.D. Murray, E.A. Stanley, D.L. Brown, On the spatial spread of rabies among foxes. Proc. R. Soc. Lond. Ser. B 229, 111–150 (1986)

    Article  Google Scholar 

  34. R. Peng, X.-Q. Zhao, A reaction-diffusion SIS epidemic model in a time-periodic environment. Nonlinearity 25, 1451–1471 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. L.A. Real, J.E. Childs, Spatial-temporal dynamics of rabies in ecological communities, in Disease Ecology: Community structure and pathogen dynamics, ed. by S.K. Collinge, C. Ray (Oxford University Press, Oxford, 2006), pp. 168–185

    Chapter  Google Scholar 

  36. C. Rebelo, A. Margheri, N. Bacaër, Persistence in some periodic epidemic models with infection age or constant periods of infection. Discrete Contin. Dyn. Syst. Ser. B 19, 1155–1170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. R.C. Rosatte, R.R. Tinline, D.H. Johnston, Rabies control in wild carnivores, in Rabies, ed. by A. Jackson, W. Wunner (Academic Press, New York, 2007), pp. 595–634

    Chapter  Google Scholar 

  38. D. Slate, C.E. Rupprecht, D. Donovan, J. Badcock, A. Messier, R. Chipman, M. Mendoza, K. Nelson, Attaining raccoon rabies management goals: history and challenges. Dev. Biol. (Basel) 131, 439–447 (2008)

    Google Scholar 

  39. H.L. Smith, Monotone Dynamical Systems, An Introduction to the Theory of Competitive and Cooperative Systems. Mathematical Surveys and Monographs, vol. 41 (American Mathematical Society, Providence, RI, 1995)

    Google Scholar 

  40. D.L. Smith, B. Lucey, L.A. Waller, J.E. Childs, L.A. Real, Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes, in Proceedings of the National Academy of Sciences of the United States of America 99, 3668–3672 (2002)

    Google Scholar 

  41. H.R. Thieme, Global asymptotic stability in epidemic models, in Proceedings Equadiff 82, ed. by H.W. Knobloch, K. Schmitt. Lecture Notes in Mathematics, vol. 1017 (Springer, Berlin, 1983), pp. 608–615

    Google Scholar 

  42. H.R. Thieme, Renewal theorems for linear periodic Volterra integral equations. J. Integral Equ. 7, 253–277 (1984)

    MathSciNet  MATH  Google Scholar 

  43. H.R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180, 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. W. Wang, X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ. 20, 699–717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. W. Wang, X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of Dengue transmission. SIAM J. Appl. Math. 71, 147–168 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. W. Wang, X.-Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. B.-G. Wang, X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models. J. Dyn. Differ. Equ. 25, 535–562 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Wang, X.-Q. Zhao, A periodic vector-bias malaria model with incubation period. SIAM J. Appl. Math. 77, 181–201 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. X. Wang, X.-Q. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality. SIAM J. Appl. Dyn. Syst. (in press)

    Google Scholar 

  51. F.-B. Wang, S.-B. Hsu, X.-Q. Zhao, A reaction-diffusion-advection model of harmful algae growth with toxin degradation. J. Differ. Equ. 259, 3178–3201 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Y. **ao, X. Zou, Transmission dynamics for vector-borne diseases in a patchy environment. J. Math. Biol. 69, 113–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. D. Xu, X.-Q. Zhao, Dynamics in a periodic competitive model with stage structure. J. Math. Anal. Appl. 311, 417–438 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Zhang, Z.-C. Wang, X.-Q. Zhao, Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J. Differ. Equ. 258, 3011–3036 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. X.-Q. Zhao, Basic reproduction ratios for periodic compartmental models with time delay. J. Dyn. Differ. Equ. 29, 67–82 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhao, XQ. (2017). The Theory of Basic Reproduction Ratios. In: Dynamical Systems in Population Biology. CMS Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-56433-3_11

Download citation

Publish with us

Policies and ethics

Navigation