Biomaterials for Cell Encapsulation: Progress Toward Clinical Applications

  • Chapter
  • First Online:
Clinical Applications of Biomaterials

Abstract

Cell microencapsulation is a technique to treat a wide range of diseases through the continuous and controlled delivery of therapeutic products. This technique can also treat multiple diseases in the absence of immunosuppression. Over the past few years, the quality of life of patients has improved remarkably as a direct result of microencapsulation technology, as this technology eliminates the requirement of an immunosuppressant. However, much additional research needs to be conducted in order to commercialize and clinically apply more widely this life-saving technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang TMS. Semipermeable microcapsules. Science. 1964;146:524–5.

    Article  Google Scholar 

  2. Chick WL, et al. Beta cell culture on synthetic capillaries: an artificial endocrine pancreas. sScience. 1975;187:847–84.

    Article  Google Scholar 

  3. Sun YL, et al. Normalization of diabetes in spontaneously diabetic cynomologous monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest. 1996;98:1417–22.

    Article  Google Scholar 

  4. Orive G, Hernández RM, Rodríguez Gascón A, Calafiore R, Chang TMS, De Vos P, … Pedraz JL. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 2004;22(2):87–92. 10.1016/j.tibtech.2003.11.004.

    Google Scholar 

  5. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release. 2008;132(2):76–83. http://doi.org/10.1016/j.jconrel.2008.08.010.

    Article  Google Scholar 

  6. Orive G, et al. Microencapsulation of an anti VE-cadherin antibody secreting 1B5 hybridoma cells. Biotechnol Bioeng. 2001;76:285–94.

    Article  Google Scholar 

  7. Sharkawy AA, et al. Engineering the tissue which encapsulates subcutaneous implants. Diffusion properties. J Biomed Mater Res. 1997;37:401–12.

    Article  Google Scholar 

  8. Hunkeler D, et al. Objectively assessing bioartificial organs. Ann N Y Acad Sci. 2001;944:456–71.

    Article  Google Scholar 

  9. Bisceglie V. Uber die antineoplastische immunitat; heterologe Einpflnzung von Tumoren in Huhner-embryonen. Ztschr Krebsforsch. 1933;40:122–40.

    Article  Google Scholar 

  10. Hernández RM, Orive G, Murua A, Pedraz JL. Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev. 2010;62(7–8):711–30. http://doi.org/10.1016/j.addr.2010.02.004.

    Article  Google Scholar 

  11. Kulig KM, Vacanti JP. Hepatic tissue engineering. Transpl Immunol. 2004;12:303–10.

    Article  Google Scholar 

  12. Street CN, Rajotte RV, Korbutt GS. Stem cells: a promising source of pancreatic islets for transplantation in type 1 diabetes. Curr Top Dev Biol. 2003;58:111–36.

    Article  Google Scholar 

  13. Orive G, de Castro M, Ponce S, Hernández RM, Gascón AR, Bosch M, Alberch J, Pedraz JL. Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol Ther. 2005;12:283–9.

    Article  Google Scholar 

  14. Caruso F. Hollow capsule processing through colloidal templating and selfassembly. Chemistry. 2000;6:413–9.

    Article  Google Scholar 

  15. Li RH. Materials for immunoisolated cell transplantation. Adv Drug Deliv Rev. 1998;33:87–109.

    Article  Google Scholar 

  16. Qiu C, Chen M, Yan H, Wu HK. Generation of uniformly sized alginate microparticles for cell encapsulation by using a soft-lithography approach. Adv Mater. 2007;19:1603–7.

    Article  Google Scholar 

  17. Murua A, de Castro M, Orive G, Hernández RM, Pedraz JL. In vitro characterization and in vivo functionality of erythropoietin-secreting cell immobilized in alginate–poly-L-lysine–alginate microcapsules. Biomacromolecules. 2007;8:3302–7.

    Article  Google Scholar 

  18. Orive G, Hernandez RM, Gascon AR, Pedraz JL. Challenges in cell encapsulation. In: Nedovic V, Willaert R, editors. Applications of cell immobilization biotechnology, vol. 8B. Dordrecht: Springer; 2005. p. 185–96.

    Chapter  Google Scholar 

  19. Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210:908–10.

    Article  Google Scholar 

  20. Consiglio S, Martino D, Dolcetta G, Cusella M, Conese S, Marchesini G, Benaglia L, Wrabetz A, Orlacchio N, Déglon P, Aebischer GM, Severini C. Bordignon, metabolic correction in oligodendrocytes derived from metachromatic leukodystrophy mouse model by using encapsulated recombinant myoblasts. J Neurol Sci. 2007;255:7–16.

    Article  Google Scholar 

  21. Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442:368–73.

    Article  Google Scholar 

  22. Antosiak-Iwańska M, Sitarek E, Sabat M, Godlewska E, Kinasiewicz J, Weryński A. Isolation, banking, encapsulation and transplantation of different types of Langerhans islets. Pol Arch Med Wewn. 2009;119:311–6.

    Google Scholar 

  23. Stover NP, Watts RL. Spheramine for treatment of Parkinson’s disease. Neurotherapeutics. 2008;5:252–9.

    Article  Google Scholar 

  24. Orive G, Tam SK, Pedraz JL, Hallé JP. Biocompatibility of alginate–poly-Llysine microcapsules for cell therapy. Biomaterials. 2006;20:3691–700.

    Article  Google Scholar 

  25. Benoit DS, Schwartz MP, Durney AR, Anseth KS. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater. 2008;7:816–82.

    Article  Google Scholar 

  26. Falk S, Zhang SJ. Sherman, pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson’s disease. Neurosci Lett. 2009;458:49–52.

    Article  Google Scholar 

  27. Tatard VM, Venier-Julienne MC, Saulnier P, Prechter E, Benoit JP, Meneia P, Montero-Menei CN. Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials. 2005;26:3727–37.

    Article  Google Scholar 

  28. Sommar P, Pettersson S, Ness C, Johnson H, Kratz G, Junker JPE. Engineering three-dimensional cartilage- and bonelike tissues using human dermal fibroblasts and macroporous gelatine microcarriers. J Plast Reconstr Aesthet Surg. 2010;63:1036–46.

    Article  Google Scholar 

  29. Sun ZJ, Lu GJ, Li SY, Yu WT, Wang W, **e YB, Ma X. Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. Appl Microbiol Biotechnol. 2007;75:1419–27.

    Article  Google Scholar 

  30. Herrero EP, Martín del Valle EM, Galán MA. Immobilization of mesenchymal stem cells and monocytes in biocompatible microcapsules to cell therapy. Biotechnol Prog. 2007;23:940–5.

    Article  Google Scholar 

  31. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Med Biol Eng Comput. 2000;38:211–8.

    Article  Google Scholar 

  32. Rosenblatt J, Devereux B, Wallace DG. Injectable collagen as a pH-sensitive hydrogel. Biomaterials. 1994;15:985–95.

    Article  Google Scholar 

  33. Senuma Y, Franceschin S, Hilborn JG, Tissieres P, Bisson I, Frey P. Bioresorbable microspheres by spinning disk atomization as injectable cell carrier: from preparation to in vitro evaluation. Biomaterials. 2000;21:1135–44.

    Article  Google Scholar 

  34. De Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev. 2014;67–68:15–34. http://doi.org/10.1016/j.addr.2013.11.005.

    Article  Google Scholar 

  35. Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014;67–68:35–73. http://doi.org/10.1016/j.addr.2013.07.018.

    Article  Google Scholar 

  36. Orive G, Gascón AR, Hernández RM, Igartua M, Pedraz JL. Cell microencapsulation technology for biomedical purposes: novel insights and challenges. Trends Pharmacol Sci. 2003;24(5):207–10. http://doi.org/10.1016/S0165-6147(03)00073-7.

    Article  Google Scholar 

  37. Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev. 2014;67–68:111–30. http://doi.org/10.1016/j.addr.2013.07.010.

    Article  Google Scholar 

  38. Calafiore R, Basta G. Clinical application of microencapsulated islets: actual prospectives on progress and challenges. Adv Drug Deliv Rev. 2014;67–68:84–92. http://doi.org/10.1016/j.addr.2013.09.020.

    Article  Google Scholar 

  39. Abbah SA, Lu WW, Chan D, Cheung KMC, Liu WG, Zhao F, Li ZY, Leong JCY, Luk KDK. In vitro evaluation of alginate encapsulated adipose-tissue stromal cells for use as injectable bone graft substitute. Biochem Biophys Res Commun. 2006;347:185–91.

    Article  Google Scholar 

  40. Maguire T, Davidovich AE, Wallenstein EJ, Novik E, Sharma N, Pedersen H, Androulakis IP, Schloss R, Yarmush M. Control of hepatic differentiation via cellular aggregation in an alginate microenvironment. Biotechnol Bioeng. 2007;98:631–44.

    Article  Google Scholar 

  41. Dulieu C, Bazile D. Influence of lipid nanocapsules composition on their aptness to freeze-drying. Pharm Res. 2005;22:285–92.

    Article  Google Scholar 

  42. Iwata H, Amemiya H, Hayashi R, Fujii S, Akutsu T. The use of photocrosslinkable polyvinyl alcohol in the immunoisolation of pancreatic islets. Transplant Proc. 1990;22:797–9.

    Google Scholar 

  43. Hymer WC, Wilbur DL, Page R, Hibbard E, Kelsey RC, Hatfield JM. Pituitary hollow fiber units in vivo and in vitro. Neuroendocrinology. 1981;32:339–49.

    Article  Google Scholar 

  44. Qi Z, Shen Y, Yanai G, Yang K, Shirouzu Y, Hiura A, Sumi S. The in vivo performance of polyvinyl alcohol macro-encapsulated islets. Biomaterials. 2010;31:4026–31.

    Article  Google Scholar 

  45. Winn SR, Lindner MD, Lee A, Haggett G, Francis JM, Emerich DF. Polymer-encapsulated genetically modified cells continue to secrete human nerve growth factor for over one year in rat ventricles: behavioral and anatomical consequences. Exp Neurol. 1996;140:126–38.

    Article  Google Scholar 

  46. Vrana NE, O’Grady A, Kay E, Cahill PA, McGuinness GB. Cell encapsulation within PVA-based hydrogels via freeze-thawing: a one-step scaffold formation and cell storage technique. J Tissue Eng Regen Med. 2009;3:567–72.

    Article  Google Scholar 

  47. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K. PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials. 2004;25:5885–92.

    Article  Google Scholar 

  48. Kaur G. Biaoctive glasses:potential biomaterials for future therapy. Heidelberg: Springer; 2017.

    Book  Google Scholar 

  49. Zalipsky S, Mullah N, Harding JA, Gittelman J, Guo L, DeFrees SA. Poly(ethylene glycol)-grafted liposomes with oligopeptide or oligosaccharide ligands appended to the termini of the polymer chains. Bioconjug Chem. 1997;8:111–8.

    Article  Google Scholar 

  50. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  Google Scholar 

  51. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307–14.

    Article  Google Scholar 

  52. Hubbell JA, Pathak CP, Sawhney AS, Desai NP, Hossainy SFA. Gels for encapsulation of biological materials. US Patent US 5801033 A, CA, USA, 2004.

    Google Scholar 

  53. Chang SJ, Lee CH, Hsu CY, Wang YJ. Biocompatible microcapsules with enhanced mechanical strength. J Biomed Mater Res A. 2002;59:118–26.

    Article  Google Scholar 

  54. Nuttelman CR, Rice MA, Rydholm AE, Salinas CN, Shah DN, Anseth KS. Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Prog Polym Sci. 2008;33:167–79.

    Article  Google Scholar 

  55. Andrade JD, Hlady V. Plasma protein adsorption: the big twelve. Ann N Y Acad Sci. 1987;516:158–72.

    Article  Google Scholar 

  56. Sabnis A, Rahimi M, Chapman C, Nguyen KT. Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J Biomed Mater Res A. 2009;91:52–9.

    Article  Google Scholar 

  57. Cellesi F, Tirelli N, Hubbell JA. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical crosslinking. Biomaterials. 2004;25:5115–24.

    Article  Google Scholar 

  58. Cellesi F, Tirelli N. A new process for cell microencapsulation and other biomaterial applications: thermal gelation and chemical cross-linking in “tandem”. J Mater Sci Mater Med. 2005;16:559–65.

    Article  Google Scholar 

  59. Lin CC, Metters AT, Anseth KS. Functional PEG–peptide hydrogels to modulate local inflammation induced by the pro-inflammatory cytokine TNFalpha. Biomaterials. 2009;30:4907–14.

    Article  Google Scholar 

  60. Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287–94.

    Article  Google Scholar 

  61. Sawhney AS, Pathak CP, Hubbell JA. Interfacial photopolymerization of poly(ethylene glycol)-based hydrogels upon alginate–poly(L-lysine) microcapsules for enhanced biocompatibility. Biomaterials. 1993;14:1008–16.

    Article  Google Scholar 

  62. Jang JY, Lee DY, Park SJ, Byun Y. Immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets. Biomaterials. 2004;25:3663–9.

    Article  Google Scholar 

  63. Lamberton P, Lipsky M, McMillan P. Use of semipermeable polyurethane hollow fibers for pituitary organ culture. In Vitro Cell Dev Biol. 1988;24:500–4.

    Article  Google Scholar 

  64. Kim YT, Hitchcock R, Broadhead KW, Messina DJ, Tresco PA. A cell encapsulation device for studying soluble factor release from cells transplanted in the rat brain. J Control Release. 2005;102:101–11.

    Article  Google Scholar 

  65. Seymour RB, Kauffman GB. Polyurethanes: a class of modern versatile materials. J Chem Educ. 1992;69:909–14.

    Article  Google Scholar 

  66. Takebe K, Shimura T, Munkhbat B, Hagihara M, Nakanishi H, Tsuji K. Xenogeneic (pig to rat) fetal liver fragment transplantation using macrocapsules for immunoisolation. Cell Transplant. 1996;5:S31–3.

    Article  Google Scholar 

  67. Granicka LH, Kawiak JW, Glowacka E, Werynski A. Encapsulation of OKT3 cells in hollow fibers. ASAIO J. 1996;42:M863–6.

    Article  Google Scholar 

  68. Petersen P, Lembert N, Stenglein S, Planck H, Ammon HP, Becker HD. Insulin secretion from cultured islets encapsulated in immuno- and virus-protective capillaries. Transplant Proc. 2001;33:3520–2.

    Article  Google Scholar 

  69. Deglon N, Heyd B, Tan SA, Joseph JM, Zurn AD, Aebischer P. Central nervous system delivery of recombinant ciliary neurotrophic factor by polymer encapsulated differentiated C2C12 myoblasts. Hum Gene Ther. 1996;7:2135–46.

    Article  Google Scholar 

  70. Ronel SH, D’Andrea MJ, Hashiguchi H, Klomp GF, Dobelle WH. Macroporous hydrogel membranes for a hybrid artificial pancreas. I. Synthesis and chamber fabrication. J. Biomed Mater Res A. 1983;17:855–64.

    Article  Google Scholar 

  71. Sefton MV, May MH, Lahooti S, Babensee JE. Making microencapsulation work: conformal coating, immobilization gels and in vivo performance. J Control Release. 2000;65:173–86.

    Article  Google Scholar 

  72. Fleming AJ, Sefton MV. Viability of hydroxyethyl methacrylate–methyl methacrylate-microencapsulated PC12 cells after omental pouch implantation within agarose gels. Tissue Eng. 2003;9:1023–36.

    Article  Google Scholar 

  73. Gharapetian H, Davies NA, Sun AM. Encapsulation of viable cells within polyacrylate membranes. Biotechnol Bioeng. 1986;28:1595–600.

    Article  Google Scholar 

  74. Sugamori ME, Sefton MV. Microencapsulation of pancreatic islets in a water insoluble polyacrylate. ASAIO Trans. 1989;35:791–9.

    Google Scholar 

  75. Lahooti S, Sefton MV. Methods for microencapsulation with HEMA–MMA. Methods Mol Med. 1999;18:331–48.

    Google Scholar 

  76. Wells GD, Fisher MM, Sefton MV. Microencapsulation of viable hepatocytes in HEMA–MMA microcapsules: a preliminary study. Biomaterials. 1993;14:615–20.

    Article  Google Scholar 

  77. Uludag H, Sefton MV. Metabolic activity of CHO fibroblasts in HEMA–MMA microcapsules. Biotechnol Bioeng. 1992;39:672–8.

    Article  Google Scholar 

  78. Sukhorukov GB, Donath E, Moya S, Susha AS, Voigt A, Hartmann J, Mohwald H. Microencapsulation by means of step-wise adsorption of polyelectrolytes. J Microencapsul. 2000;17:177–85.

    Article  Google Scholar 

  79. Georgieva R, Moya S, Donath E, Baumler H. Permeability and conductivity of red blood cell templated polyelectrolyte capsules coated with supplementary layers. Langmuir. 2004;20:1895–900.

    Article  Google Scholar 

  80. Brown LF, Detmar M, Claffey K, Nagy JA, Feng D, Dvorak AM, Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. EXS. 1997;79:233–69.

    Google Scholar 

  81. Krol S, del Guerra S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P. Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett. 2006;6:1933–9.

    Article  Google Scholar 

  82. Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev. 1998;31:267–85.

    Article  Google Scholar 

  83. Bruni S, Chang TM. Hepatocytes immobilised by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn rats. Biomater Artif Cells Artif Organs. 1989;17:403–11.

    Article  Google Scholar 

  84. Teramura Y, Oommen OP, Olerud J, Hilborn J, Nilsson B. Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimideconjugated PEG-lipid with multifunctional crosslinkers. Biomaterials. 2013;34:2683–93.

    Article  Google Scholar 

  85. Lanza RP, Ecker D, KÅhtreiber WM, Staruk JE, Marsh J, Chick WL. A simple method for transplanting discordant islets into rats using alginate gel spheres. Transplantation. 1995;59:1485–7.

    Article  Google Scholar 

  86. Fu XW, Sun AM. Microencapsulated parathyroid cells as a bioartificial parathyroid. In vivo studies. Transplantation. 1989;47:432–5.

    Article  Google Scholar 

  87. Stokke BT, Smidsroed O, Bruheim P, Skjaak-Braek G. Distribution of urinate residues in alginate chains in relation to alginate gelling properties. Macromolecules. 1991;24:4637–45.

    Article  Google Scholar 

  88. Morch YA, Donati I, Strand BL, Skjak Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7:1471–80.

    Article  Google Scholar 

  89. Sobol M, Bartkowiak A, de Haan B, de Vos P. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules. J Biomed Mater Res A. 2013;101:1907–14.

    Article  Google Scholar 

  90. Zhu JH, Wang XW, Ng S, Quek CH, Ho HT, Lao XJ, Yu H. Encapsulating live cells with water-soluble chitosan in physiological conditions. J Biotechnol. 2005;117:355–65.

    Article  Google Scholar 

  91. Haque T, Chen H, Ouyang W, Martoni C, Lawuyi B, Urbanska AM, Prakash S. In vitro study of alginate-chitosan microcapsules: an alternative to liver cell transplants for the treatment of liver failure. Biotechnol Lett. 2005;27:317–22.

    Article  Google Scholar 

  92. Karle P, Muller P, Renz R, Jesnowski R, Saller R, von Rombs K, Nizze H, Liebe S, Gunzburg WH, Salmons B, Lohr M. Intratumoral injection of encapsulated cells producing an oxazaphosphorine activating cytochrome P450 for targeted chemotherapy. Adv Exp Med Biol. 1998;451:97–106.

    Article  Google Scholar 

  93. Kubota N, Tatsumoto N, Sano T, Toya K. A simple preparation of half N-acetylated chitosan highly soluble inwater and aqueous organic solvents. Carbohydr Res. 2000;324:268–74.

    Article  Google Scholar 

  94. Gupta S, Kim SK, Vemuru RP, Aragona E, Yerneni PR, Burk RD, Rha CK. Hepatocyte transplantation: an alternative system for evaluating cell survival and immunoisolation. Int J Artif Organs. 1993;16:155–63.

    Google Scholar 

  95. Lee BR, Lee KH, Kang E, Kim DS, Lee SH. Microfluidic wet spinning of chitosan-alginate microfibers and encapsulation of HepG2 cells in fibers. Biomicrofluidics. 2011;5:22208.

    Article  Google Scholar 

  96. Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release. 2002;82:373–83.

    Article  Google Scholar 

  97. Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs KV, Gunzburg WH, Salmons B, Saller RM. Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Ann N Y Acad Sci. 1999;875:46–63.

    Article  Google Scholar 

  98. Stadlbauer V, Stiegler PB, Schaffellner S, Hauser O, Halwachs G, Iberer F, Tscheliessnigg KH, Lackner C. Morphological and functional characterization of a pancreatic beta-cell line microencapsulated in sodium cellulose sulfate/ poly(diallyldimethylammonium chloride). Xenotransplantation. 2006;13:337–44.

    Article  Google Scholar 

  99. Weber W, Rinderknecht M, Daoud-El Baba M, de Glutz FN, Aubel D, Fussenegger M. CellMAC: a novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. J Biotechnol. 2004;114:315–26.

    Article  Google Scholar 

  100. Schaffellner S, Stadlbauer V, Stiegler P, Hauser O, Halwachs G, Lackner C, Iberer F, Tscheliessnigg KH. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant Proc. 2005;37:248–52.

    Article  Google Scholar 

  101. Yang H, Zhao K, Ye Y, Deng S. Study of macroencapsulated islet xenografts for treatment of diabetes in mice. Hua ** Yi Ke Da Xue Xue Bao. 1998;29:132–5.

    Google Scholar 

  102. Scheirer W, Nilsson K, Merten OW, Katinger HW, Mosbach K. Entrapment of animal cells for the production of biomolecules such as monoclonal antibodies. Dev Biol Stand. 1983;55:155–61.

    Google Scholar 

  103. Jain K, Yang H, Cai BR, Haque B, Hurvitz AI, Diehl C, Miyata T, Smith BH, Stenzel K, Suthanthiran M, et al. Retrievable, replaceable, macroencapsulated pancreatic islet xenografts Long-term engraftment without immunosuppression. Transplantation. 1995;59:319–24.

    Article  Google Scholar 

  104. Yin C, Chia SM, Quek CH, Yu H, Zhuo RX, Leong KW, Mao HQ. Microcapsules with improved mechanical stability for hepatocyte culture. Biomaterials. 2003;24:1771–80.

    Article  Google Scholar 

  105. Lahooti S, Sefton MV. Microencapsulation of normal and transfected L929 fibroblasts in a HEMA–MMA copolymer. Tissue Eng. 2000;6:139–49.

    Article  Google Scholar 

  106. Wu FJ, Friend JR, Lazar A, Mann HJ, Remmel RP, Cerra FB, Hu WS. Hollow fiber bioartificial liver utilizing collagen-entrapped porcine hepatocyte spheroids. Biotechnol Bioeng. 1996;52:34–44.

    Article  Google Scholar 

  107. Vendruscolo CW, Andreazza IF, Ganter JL, Ferrero C, Bresolin TM. Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm. 2005;296:1–11.

    Article  Google Scholar 

  108. Mendes AC, Baran ET, Pereira RC, Azevedo HS, Reis RL. Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative. Macromol Biosci. 2012;12:350–9.

    Article  Google Scholar 

  109. Zanin MP, Pettingill LN, Harvey AR, Emerich DF, Thanos CG, Shepherd RK. The development of encapsulated cell technologies as therapies for neurological and sensory diseases. J Control Release. 2012;160(1):3–13. http://doi.org/10.1016/j.jconrel.2012.01.021.

    Article  Google Scholar 

  110. Hasse C, Zielke A, Klöck G, Schlosser A, Barth P, Zimmermann U, … Rothmund M. Amitogenic alginates: key to first clinical application of microencapsulation technology. World J Surg. 1998;22(7):659–65. http://doi.org/10.1007/s002689900449.

  111. Giri J, Li WJ, Tuan RS, Cicerone MT. Stabilization of proteins by nanoencapsulation in sugar-glass for tissue engineering and drug delivery applications. Adv Mater. 2011;23(42):4861–7. http://doi.org/10.1002/adma.201102267.

    Article  Google Scholar 

  112. Emerich DF, Orive G, Thanos C, Tornoe J, Wahlberg LU. Encapsulated cell therapy for neurodegenerative diseases: from promise to product. Adv Drug Deliv Rev. 2014;67–68:131–41. http://doi.org/10.1016/j.addr.2013.07.008.

    Article  Google Scholar 

  113. Bhujbal SV, de Vos P, Niclou SP. Drug and cell encapsulation: alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev. 2014;67–68:142–53. http://doi.org/10.1016/j.addr.2014.01.010.

    Article  Google Scholar 

  114. Downing R. Historical review of pancreatic islet transplantation. World J Surg. 1984;8:137–42.

    Article  Google Scholar 

  115. Papaspyros NS. The history of diabetes mellitus. Stuttgart: George Thieme Verlag; 1964.

    Google Scholar 

  116. Sorenson RL. Isolation of an insulin secretion granule rich fraction from rat islets. Anat Rec. 1968;160:498.

    Google Scholar 

  117. Scharp DW, Kemp CB, Knight MJ, Ballinger WF, Lacy PE. The use of Ficoll in the preparation of viable islets of Langerhans fromthe rat pancreas. Transplantation. 1973;16:686–9.

    Article  Google Scholar 

  118. Moskalewski S. Isolation and culture of the islets of Langerhans of the Guinea pig. Gen Comp Endocrinol. 1965;5:342–53.

    Article  Google Scholar 

  119. Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–9.

    Article  Google Scholar 

  120. Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery. 1972;72:175–86.

    Google Scholar 

  121. Tuch BE, Keogh GW, Williams LJ, Wu W, Foster JL, Vaithilingam V, Philips R. Safety and viability of microencapsulated human islets transplanted into diabetic human. Diabetes Care. 2009;32:1887–9.

    Article  Google Scholar 

  122. Teramura Y, Iwata H. Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials. 2009;30:2270–5.

    Article  Google Scholar 

  123. Garcia P, Youssef I, Utvik JK, Florent-Béchard S, Barthélémy V, Malaplate-Armand C, Kriem B, Stenger C, Koziel V, Olivier JL, Escanye MC, Hanse M, Allouche A, Desbène C, Yen FT, Bjerkvig R, Oster T, Niclou SP, Pillot T. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci. 2010;30:7516–27.

    Article  Google Scholar 

  124. Spuch C, Antequera D, Portero A, Orive G, Hernández RM, Molina JA, Bermejo-Pareja F, Pedraz JL, Carro E. The effect of encapsulated VEGF-secreting cells on brain amyloid and behavioral impairment in amouse model of Alzheimer’s disease. Biomaterials. 2010;31:5608–18.

    Article  Google Scholar 

  125. Emerich DF, Lindner MD, Winn SR, Chen E, Frydel B, Kordower JH. Implants of encapsulated human CNTF-producing fibroblasts prevent behavioral deficits and striatal degeneration in a rodent model of Huntington’s disease. J Neurosci. 1996;1:5168–81.

    Google Scholar 

  126. Emerich DF, Cain CK, Greco C, Saydoff JA, Hu Z-Y, Liu H, Lindner MD. Cellular delivery of human CNTF prevents motor and cognitive dysfunction in a rodent model of Huntington’s disease. Cell Transplant. 1997;6:249–66.

    Article  Google Scholar 

  127. Emerich DF, Winn SR, Hantraye PM, Peschanski M, Chen E, Chu Y, McDermott P, Baetge EE, Kordower JH. Protective effects of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature. 1997;386:395–9.

    Article  Google Scholar 

  128. Lindvall O, Wahlberg LU. Encapsulated cell biodelivery of GDNF: a novel clinical strategy for neuroprotection and neuroregeneration in Parkinson’s disease? Exp Neurol. 2008;209:82–8.

    Article  Google Scholar 

  129. Zheng JS, Tang LL, Zheng SS, Zhan RY, Zhou YQ, Goudreau J, Kaufman D, Chen AF. Delayed gene therapy of glial cell line-derived neurotrophic factor is efficacious in a rat model of Parkinson’s disease. Brain Res Mol Brain Res. 2005;134:155–61.

    Article  Google Scholar 

  130. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F, Hoffer BJ, Gerhardt GA. Functional recovery in parkinsonian monkeys treated with GDNF. Nature. 1996;380:252–5.

    Article  Google Scholar 

  131. Tresco PA, Winn SR, Aebischer P. Polymer encapsulated neurotransmitter secreting cells: potential treatment for Parkinson’s disease. ASAIO. 1992;38:17–23.

    Article  Google Scholar 

  132. Tresco PA, Winn SR, Jaeger CB, Greene LA, Aebischer P. Polymer-encapsulated PC12 cells: long-term survival and associated reduction in lesioned-induced rotational behavior. Cell Transplant. 1992;1:255–64.

    Google Scholar 

  133. Emerich DF, Winn SR, Harper J, Hammang JP, Baetge EE, Kordower JH. Implants of polymer-encapsulated human NGF-secreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J Comp Neurol. 1994;349:148–64.

    Article  Google Scholar 

  134. Winn SR, Hammang JP, Emerich DF, Lee A, Palmiter RD, Baetge EE. Polymer-encapsulated cells genetically modified to secrete human nerve growth factor promote the survival of axotomized septal cholinergic neurons. Proc Natl Acad Sci U S A. 1994;91:2324–8.

    Article  Google Scholar 

  135. Lee J-L, Ahn J-H, Park SH, Lim HY, Kwon JH, Ahn S, et al. Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum. Investig New Drugs. 2012;k30:1984–90.

    Article  Google Scholar 

  136. Saif MW, Podoltsev NA, Rubin MS, Figueroa JA, Lee MY, Kwon J, et al. Phase II clinical trial of paclitaxel loaded polymeric micelle in patients with advanced pancreatic cancer. Cancer Investig. 2010;28:186–94.

    Article  Google Scholar 

  137. Read TA, Sorensen DR, Mahesparan R, Enger PO, Timpl R, Olsen BR, et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol. 2001;19:29–34.

    Article  Google Scholar 

  138. Terzis AJA, Niclou SP, Rajcevic U, Danzeisen C, Bjerkvig R. Cell therapies for glioblastoma. Expert Opin Biol Ther. 2006;6:739–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurbinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kaur, G. et al. (2017). Biomaterials for Cell Encapsulation: Progress Toward Clinical Applications. In: Kaur, G. (eds) Clinical Applications of Biomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-56059-5_14

Download citation

Publish with us

Policies and ethics

Navigation