The Role of MiRNAs in Auxin Signaling and Regulation During Plant Development

  • Chapter
  • First Online:
Plant Epigenetics

Abstract

Auxins are involved in almost every aspect of plant physiology. For instance, auxins play a central role in the differentiation process during the development of plants. Furthermore, the homeostasis of auxins involves biosynthesis and degradation as well as their conjugation with amino acids and carbohydrates, and the hydrolysis of some of these conjugates liberates indole-3-acetic acid (IAA). The balance in the IAA concentration triggers its own signal transduction pathway and produces a molecular and biochemical response. This response begins with the sensing of the IAA concentration through the construction of a co-receptor complex that includes an F-box protein from the TRANSPORT INHIBITOR RESPONSE 1 (TIR1)/AUXIN SIGNALING F-BOX PROTEIN (AFB) family and a member of the AUXIN/IAA-INDUCIBLE (AUX/IAA) family of transcriptional repressors. This complex allows the expression of auxin response genes. Most of the auxin-regulated processes are tightly regulated. Several differentially expressed miRNAs, which alter the auxin response, have been identified in Arabidopsis thaliana somatic embryogenesis development. Also, during the stress response in soybean roots, auxin-responsive cis-elements in the promoters of many salt-responsive miRNAs have been found. These findings suggest that miRNAs may be regulated by auxins. In this chapter, we analyze develo** research related to the interaction between auxins and miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adai A, Johnson C, Mlotshwa S et al (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15:78–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen E, **e Z, Gustafson AM et al (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Peral MM, Li J, Li Y et al (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ (2008) Evolution of microRNAs and their targets: are all microRNAs biologically relevant? BBA-Gene Regul Mech 1779:725–734

    CAS  Google Scholar 

  • Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axtell MJ, Bowman JL (2008) Evolution of plant microRNAs and their targets. Trends Plant Sci 13:343–349

    Article  CAS  PubMed  Google Scholar 

  • Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12:221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayil-Gutiérrez BA, Galaz-Ávalos RM, Peña-Cabrera E et al (2013) Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. Plant Signal Behav 8:e26998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957–969

    Article  CAS  PubMed  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  • Barrera-Figueroa BE, Gao L, Diop NN et al (2011) Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol 11:127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66. doi:10.1146/annurev.arplant.48.1.51

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the loo** star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  PubMed  Google Scholar 

  • Berleth T, Mattsson J, Hardtke CS (2000) Vascular continuity and auxin signals. Trends Plant Sci 5:387–393

    Article  CAS  PubMed  Google Scholar 

  • Bohmert K, Camus I, Bellini C et al (1998) AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17:170–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet E, Wuyts J, Rouzé P et al (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boopathi NM (2015) Plant miRNomics: novel insights in gene expression and regulation. In: Barh D, Khan MS, Davies E (eds) Plant omics: the omics of plant science. Springer, New Delhi, pp 181–211

    Google Scholar 

  • Carlsbecker A, Lee JY, Roberts CJ et al (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves SS, Fernandes-Brum CN, Silva GFF et al (2015) New insights on coffea miRNAs: features and evolutionary conservation. Appl Biochem Biotechnol 177:879–908

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Q, Westfall CS, Hicks LM et al (2010) Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J Biol Chem 285:29780–29786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Li Z, **ong L (2012) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586:1742–1747

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Lee SH, Cho HT (2007) P-Glycoprotein 4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19:3930–3943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen SK, Dagenais N, Chory J et al (2000) Regulation of auxin response by the protein kinase PINOID. Cell 100:469–478

    Article  CAS  PubMed  Google Scholar 

  • Cifuentes D, Xue H, Taylor DW et al (2010) A novel miRNA processing pathway independent of dicer requires argonaute2 catalytic activity. Science 328:1694–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8:197–199

    Article  CAS  PubMed  Google Scholar 

  • Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23:431–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rybel B, Vassileva V, Parizot B et al (2010) A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20:1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dinesh DC, Villalobos LI, Abel S (2016) Structural biology of nuclear auxin action. Trends Plant Sci 21:302–316

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Tao Y, Zhu C (2013) Emerging roles of microRNAs in the mediation of drought stress response in plants. J Exp Bot 64:3077–3086

    Article  CAS  PubMed  Google Scholar 

  • Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckardt NA (2005) MicroRNAs regulate auxin homeostasis and plant development. Plant Cell 17:1335–1338

    Article  CAS  PubMed Central  Google Scholar 

  • Eckardt NA (2012) A microRNA cascade in plant defense. Plant Cell 24:840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan S, Li Q, Guo G et al (2015) Identification of microRNAs in two species of tomato, Solanum lycopersicum and Solanum habrochaites, by deep sequencing. J Integr Agric 14:42–49

    Article  CAS  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  CAS  PubMed  Google Scholar 

  • Friml J (2003) Auxin transport – sha** the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Vieten A, Sauer M et al (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153

    Article  CAS  PubMed  Google Scholar 

  • Furuta K, Lichtenberger R, Helariutta Y (2012) The role of mobile small RNA species during root growth and development. Curr Opin Cell Biol 24:211–216

    Article  CAS  PubMed  Google Scholar 

  • Gälweiler L, Guan C, Müller A et al (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230

    Article  PubMed  Google Scholar 

  • Geisler M, Wang B, Zhu J (2014) Auxin transport during root gravitropism: transporters and techniques. Plant Biol 16:50–57

    Article  PubMed  Google Scholar 

  • Gray WM, del Pozo JC, Walker L et al (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ (2015) The PB1 domain in auxin response factor and Aux/IAA proteins: a versatile protein interaction module in the auxin response. Plant Cell 27:33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilfoyle TJ, Hagen G (2001) Auxin response factors. J Plant Growth Regul 20:281–291

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T, Hagen G, Ulmasov T et al (1998) How does auxin turn on genes? Plant Physiol 118:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A, He K, Liu D et al (2005a) DATF: a database of Arabidopsis transcription factors. Bioinformatics 21:2568–2569

    Article  CAS  PubMed  Google Scholar 

  • Guo HS, **e Q, Fei JF et al (2005b) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI et al (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524

    Article  CAS  PubMed  Google Scholar 

  • Habets MEJ, Offringa R (2014) PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol 203:362–377

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385

    Article  CAS  PubMed  Google Scholar 

  • Hagen G, Martin G, Li Y et al (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol Biol 17:567–579

    Article  CAS  PubMed  Google Scholar 

  • Hendelman A, Buxdorf K, Stav R et al (2012) Inhibition of lamina outgrowth following Solanum lycopersicum auxin response factor 10 (SlARF10) derepression. Plant Mol Biol 78:561–576

    Article  CAS  PubMed  Google Scholar 

  • Hrtyan M, Sliková E, Hejátko J et al (2015) RNA processing in auxin and cytokinin pathways. J Exp Bot 66:4897–4912

    Article  CAS  PubMed  Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D et al (2014) MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9:e107678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iwakawa H, Tomari Y (2013) Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 52:591–601

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Kaur N, Tyagi AK et al (2006) The auxin-responsive GH3 gene family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  CAS  PubMed  Google Scholar 

  • **g H, Yang X, Zhang J et al (2015) Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat Commun 6:7395

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jung JH, Park CM (2007) MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta 225:1327–1338

    Article  CAS  PubMed  Google Scholar 

  • Kasschau KD, **e Z, Allen E et al (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

  • Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA-Gene Regul Mech 1819:137–148

    CAS  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein-protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita N, Wang H, Kasahara H et al (2012) IAA-Ala resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24:3590–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong W, Li Y, Zhang M et al (2015) A novel Arabidopsis microRNA promotes IAA biosynthesis via the indole-3-acetaldoxime pathway by suppressing superroot1. Plant Cell Physiol 56:715–726

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Mitsuda N, Seki M et al (2010) TCP transcription factors regulate the activities of asymmetric leaves1 and miR164, as well as the auxin response, during differentiation of leaves in Arabidopsis. Plant Cell 22:3574–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer EM (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9:578–582

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Leyser O (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313

    Article  CAS  PubMed  Google Scholar 

  • Li W, Cui X, Meng Z et al (2012) Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liu L, Zhuang X et al (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S-B, **e ZZ, Hu CG et al (2016) A review of auxin response factors (ARF) in plants. Front Plant Sci 7:47

    PubMed  PubMed Central  Google Scholar 

  • Liscum E, Reed JW (2002) Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol 49:387–400

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY et al (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Xu T, Dong X et al (2016) The role of gibberellins and auxin on the tomato cell layers in pericarp via the expression of ARFs regulated by miRNAs in fruit set. Acta Physiol Plant 38:1–11

    Article  CAS  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Kowalczyk M et al (2002) Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol 50:309–332

    Article  Google Scholar 

  • Llave C, **e Z, Kasschau KD et al (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Sun YH, Shi R et al (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallory AC, Vaucheret H (2004) MicroRNAs: something important between the genes. Curr Opin Plant Biol 7:120–125

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis auxin response factor17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mano Y, Nemoto K (2012) The pathway of auxin biosynthesis in plants. J Exp Bot 63:2853–2872

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Nemoto K, Suzuki M et al (2010) The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. J Exp Bot 61:25–32

    Article  CAS  PubMed  Google Scholar 

  • Manohar S, Jagadeeswaran G, Nimmakayala P et al (2013) Dynamic regulation of novel and conserved miRNAs across various tissues of diverse cucurbit species. Plant Mol Biol Rep 31:335–343

    Article  CAS  Google Scholar 

  • Marin E, Jouannet V, Herz A et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their auxin response factor targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:a001479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mette MF, van der Winden J, Matzke M et al (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnár A, Schwach F, Studholme DJ et al (2007) miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447:1126–1129

    Article  PubMed  CAS  Google Scholar 

  • Muraro D, Mellor N, Pound MP et al (2014) Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. Proc Natl Acad Sci USA 111:857–862

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nonhebel HM (2015) Tryptophan-independent IAA synthesis: critical evaluation of the evidence. Plant Physiol 169:1001–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olmedo-Monfil V, Duran-Figueroa N, Arteaga-Vazquez M et al (2010) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464:628–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacurar DI, Perrone I, Bellini C (2014) Auxin is a central player in the hormone cross-talks that control adventitious rooting. Physiol Plant 151:83–96

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li J, Song R et al (2002) CARPEL FACTORY, a dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JE, Park JY, Kim YS et al (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigge M et al (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106:22540–22545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot-Rechenmann C (2014) Auxin signaling in plants. In: Howell SH (ed) Molecular biology. The plant sciences, vol 2. Springer, New York, pp 245–268

    Google Scholar 

  • Petrášek J, Friml J (2009) Auxin transport routes in plant development. Development 136:2675–2688

    Article  PubMed  CAS  Google Scholar 

  • Petrášek J, Mravec J, Bouchard R et al (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  CAS  Google Scholar 

  • Qiao M, Zhao Z, Song Y et al (2012) Proper regeneration from in vitro cultured Arabidopsis thaliana requires the microRNA-directed action of an auxin response factor. Plant J 71:14–22

    Article  CAS  PubMed  Google Scholar 

  • Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman S, Greb T, Peaucelle A et al (2008) Interplay of miR164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76

    Article  CAS  PubMed  Google Scholar 

  • Reed JW (2001) Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci 6:420–425

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Retzer K, Butt H, Korbei B et al (2014) The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. Protoplasma 251:731–746

    Article  CAS  PubMed  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP et al (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5:325–332

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Kumar V, Sopory SK et al (2009) Cloning and validation of novel miRNA from basmati rice indicates cross talk between abiotic and biotic stresses. Mol Genet Genomics 282:463–474

    Article  CAS  PubMed  Google Scholar 

  • Sanan-Mishra N, Varanasi SP, Mukherjee S (2013) Micro-regulators of auxin action. Plant Cell Rep 32:733–740

    Article  CAS  PubMed  Google Scholar 

  • Schaller GE, Bishopp A, Kieber JJ (2015) The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27:44–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer SE, Jacobsen SE, Meinke DW et al (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7:487–491

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Jiang Z, Lu S et al (2013) Combined small RNA and degradome sequencing reveals microRNA regulation during immature maize embryo dedifferentiation. Biochem Biophys Res Commun 441:425–430

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K et al (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si-Ammour A, Windels D, Arn-Bouldoires E et al (2011) miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol 157:683–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Srivastava S, Sharma A (2016) Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 575:570–576

    Article  CAS  PubMed  Google Scholar 

  • Soriano M, Li H, Jacquard C et al (2014) Plasticity in cell division patterns and auxin transport dependency during in vitro embryogenesis in Brassica napus. Plant Cell 26:2568–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorin C, Bussell JD, Camus I et al (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17:1343–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE, Serban B, Rowe M et al (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stepanova AN, Robertson-Hoyt J, Yun J et al (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191

    Article  CAS  PubMed  Google Scholar 

  • Strader LC, Bartel B (2011) Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol Plant 4:477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su SH, Gray WM, Masson PH (2015) Auxin: shape matters. Nat Plants 1:15097

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Liu Y, Zhou C et al (2016) The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell Tiss Org 124:405–417

    Article  CAS  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wang Y, Mou F et al (2016) Genome-wide small RNA analysis of soybean reveals auxin-responsive microRNAs that are differentially expressed in response to salt stress in root apex. Front Plant Sci 6:1273

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Zhu JK (2007) Micro RNAs and short-interfering RNAs in plants. J Integr Plant Biol 49:817–826

    Article  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LI, Sharon M et al (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Dhonukshe P, Brewer PB et al (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738–2754

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Reinhart BJ, Bartel DP et al (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Muto H, Higuchi K et al (2004) Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J 40:333–343

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P et al (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E et al (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang JJ, Guo HS (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27:574–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XJ, Reyes JL, Chua NH et al (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Wang LJ, Mao YB et al (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Schwab R, Czech B et al (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Chu J, Yu T et al (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci USA 112:4821–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weijers D (2015) Auxin: harnessing a loose cannon. Nat Plants 1:15024

    Article  CAS  PubMed  Google Scholar 

  • Weijers D, Schlereth A, Ehrismann JS et al (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell 10:265–270

    Article  CAS  PubMed  Google Scholar 

  • Windels D, Vazquez F (2011) miR393: integrator of environmental cues in auxin signaling? Plant Signal Behav 6:1672–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won C, Shen X, Mashiguchi K et al (2011) Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of arabidopsis and YUCCAs in Arabidopsis. Proc Natl Acad Sci USA 108:18518–18523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • **e Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of dicer-like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Dai N, Chen J et al (2014) Cell surface ABP1-TMK auxin-sensing complex activates ROP GTPase signaling. Science 343:1025–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zha M, Li Y et al (2015) The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.) Plant Cell Rep 34:1647–1662

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Han SJ, Yoon EK et al (2006) Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34:1892–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon EK, Yang JH, Lim J et al (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Res 38:1382–1391

    Article  CAS  PubMed  Google Scholar 

  • Zazimalová E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625–634

    PubMed  Google Scholar 

  • Zazimalová E, Murphy AS, Yang H et al (2010) Auxin transporters – why so many? Cold Spring Harb Perspect Biol 2:a001552

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhai L, Xu L, Wang Y et al (2016) Transcriptional identification and characterization of differentially expressed genes associated with embryogenesis in radish (Raphanus sativus L.) Sci Rep 6:21652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BH, PAN XP, Wang QL et al (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15:336–360

    Article  PubMed  Google Scholar 

  • Zhang B, Pan X, Anderson TA (2006a) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cannon CH et al (2006b) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Swarup R, Bennett M et al (2013) Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem. Curr Biol 23:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang S, Xu Y et al (2015) The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ 38:638–654

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C et al (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR et al (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao T, Li G, Mi S et al (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XY, Song L, Xue HW (2013) Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through auxin signaling components IAA19 and ARF7. Mol Plant 6:887–904

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Lee B (2015) Friends or foes: new insights in jasmonate and ethylene co-actions. Plant Cell Physiol 56:414–420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work from the VMLV laboratory was supported by a grant from the National Council of Science and Technology (CONACyT; Grant No. 257436), and a scholarship from CONACyT to JAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Loyola-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

De-la-Peña, C., Nic-Can, G.I., Avilez-Montalvo, J., Cetz-Chel, J.E., Loyola-Vargas, V.M. (2017). The Role of MiRNAs in Auxin Signaling and Regulation During Plant Development. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_2

Download citation

Publish with us

Policies and ethics

Navigation