Future Perspectives of IRE

  • Chapter
  • First Online:
Irreversible Electroporation in Clinical Practice

Abstract

Modern medicine is constantly develo** less invasive methods for treatment of disease. While some of the research regarding tissue ablation was documented over 100 years ago, the majority of the investigative efforts have taken place within the past 20 years. Since its first introduction in 1990, the efficacy of thermal ablation techniques, such as radiofrequency ablation (RFA) and microwave ablation (MWA), has greatly improved due to technological advancements in image guidance, resulting in real-time tumor localization and accurate needle targeting. Technical advances of the thermal devices such as the development of more powerful generators and better-quality probe designs have further improved the efficacy, creating larger, more spherical, and more predictable ablation zones. In the rapidly changing climate of tumor ablation, irreversible electroporation (IRE) is the newest kid on the block. Over the past years, IRE has been increasingly used in clinical practice because the hypothetical advantages over thermal ablation seem intuitive and self-evident. However, hard evidence regarding the actual working mechanism and – more importantly – regarding the established safety and efficacy is lacking and conclusions drawn from the available data may very well be prejudiced

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Qin Z, et al. Irreversible electroporation: an in vivo study with dorsal skin fold chamber. Ann Biomed Eng. 2013;41(3):619–29.

    Article  PubMed  Google Scholar 

  2. Silk M, et al. The state of irreversible electroporation in interventional oncology. Semin Interv Radiol. 2014;31(2):111–7.

    Article  Google Scholar 

  3. Appelbaum L, et al. Irreversible electroporation ablation: creation of large-volume ablation zones in in vivo porcine liver with four-electrode arrays. Radiology. 2014;270(2):416–24.

    Article  PubMed  Google Scholar 

  4. Ivorra A, Rubinsky B. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry. 2007;70(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  5. Ivorra A, et al. In vivo electrical conductivity measurements during and after tumor electroporation: conductivity changes reflect the treatment outcome. Phys Med Biol. 2009;54(19):5949–63.

    Article  PubMed  Google Scholar 

  6. Dunki-Jacobs EM, Philips P, Martin RC 2nd. Evaluation of resistance as a measure of successful tumor ablation during irreversible electroporation of the pancreas. J Am Coll Surg. 2014;218(2):179–87.

    Article  PubMed  Google Scholar 

  7. Pavliha D, et al. Planning of electroporation-based treatments using web-based treatment-planning software. J Membr Biol. 2013;246(11):833–42.

    Article  CAS  PubMed  Google Scholar 

  8. Scheffer HJ, et al. Ablation of colorectal liver metastases by irreversible electroporation: results of the COLDFIRE-I ablate-and-resect study. Eur Radiol. 2014;24(10):2467–75.

    Article  CAS  PubMed  Google Scholar 

  9. Eller A, et al. Local control of perivascular malignant liver lesions using percutaneous irreversible electroporation: initial experiences. Cardiovasc Intervent Radiol. 2015;38(1):152–9.

    Article  PubMed  Google Scholar 

  10. Cannon R, et al. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J Surg Oncol. 2013;107(5):544–9.

    Article  PubMed  Google Scholar 

  11. Kingham TP, et al. Ablation of perivascular hepatic malignant tumors with irreversible electroporation. J Am Coll Surg. 2012;215(3):379–87.

    Article  PubMed  Google Scholar 

  12. Silk MT, et al. Percutaneous ablation of peribiliary tumors with irreversible electroporation. J Vasc Interv Radiol. 2014;25(1):112–8.

    Article  PubMed  Google Scholar 

  13. Scheffer HJ, et al. Colorectal liver metastatic disease: efficacy of irreversible electroporation – a single-arm phase II clinical trial (COLDFIRE-2 trial). BMC Cancer. 2015;15:772.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paiella S, et al. Safety and feasibility of irreversible electroporation (IRE) in patients with locally advanced pancreatic cancer: results of a prospective study. Dig Surg. 2015;32(2):90–7.

    Article  PubMed  Google Scholar 

  15. Martin RC 2nd, et al. Irreversible electroporation therapy in the management of locally advanced pancreatic adenocarcinoma. J Am Coll Surg. 2012;215(3):361–9.

    Article  PubMed  Google Scholar 

  16. Narayanan G, et al. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J Vasc Interv Radiol. 2012;23(12):1613–21.

    Article  PubMed  Google Scholar 

  17. Faris JE, et al. FOLFIRINOX in locally advanced pancreatic cancer: the Massachusetts General Hospital cancer Center experience. Oncologist. 2013;18(5):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hosein PJ, et al. A retrospective study of neoadjuvant FOLFIRINOX in unresectable or borderline-resectable locally advanced pancreatic adenocarcinoma. BMC Cancer. 2012;12:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suker M, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol. 2016;17(6):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Von Hoff DD, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369(18):1691–703.

    Article  Google Scholar 

  21. Loehrer PJ Sr, et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an Eastern Cooperative Oncology Group trial. J Clin Oncol. 2011;29(31):4105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gurka MK, et al. Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: a pilot trial demonstrating safety. Radiat Oncol. 2013;8:44.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Berber B, et al. Emerging role of stereotactic body radiotherapy in the treatment of pancreatic cancer. Expert Rev Anticancer Ther. 2013;13(4):481–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lax I, et al. Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol. 1994;33(6):677–83.

    Article  CAS  PubMed  Google Scholar 

  25. Auriemma WS, et al. Locally advanced pancreatic cancer. Semin Oncol. 2012;39(4):e9–22.

    Article  PubMed  Google Scholar 

  26. Matsuo K, et al. The Blumgart preoperative staging system for hilar cholangiocarcinoma: analysis of resectability and outcomes in 380 patients. J Am Coll Surg. 2012;215(3):343–55.

    Article  PubMed  Google Scholar 

  27. Ruys AT, et al. Long-term survival in hilar cholangiocarcinoma also possible in unresectable patients. World J Surg. 2012;36(9):2179–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Darwish Murad S, et al. Predictors of pretransplant dropout and posttransplant recurrence in patients with perihilar cholangiocarcinoma. Hepatology. 2012;56(3):972–81.

    Article  PubMed  Google Scholar 

  29. Melenhorst MC, et al. Percutaneous irreversible electroporation of Unresectable hilar cholangiocarcinoma (Klatskin tumor): a case report. Cardiovasc Intervent Radiol. 2016;39(1):117–21.

    Article  PubMed  Google Scholar 

  30. Neal RE 2nd, et al. In vitro and numerical support for combinatorial irreversible electroporation and electrochemotherapy glioma treatment. Ann Biomed Eng. 2014;42(3):475–87.

    Article  PubMed  Google Scholar 

  31. Rombouts SJ, et al. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. Br J Surg. 2015;102(3):182–93.

    Article  CAS  PubMed  Google Scholar 

  32. Meijerink MR, et al. Percutaneous irreversible electroporation for recurrent thyroid cancer – a case report. J Vasc Interv Radiol. 2015;26(8):1180–2.

    Article  PubMed  Google Scholar 

  33. Bonakdar M, et al. Electroporation of brain endothelial cells on chip toward permeabilizing the blood-brain barrier. Biophys J. 2016;110(2):503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn R. Meijerink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meijerink, M.R., Scheffer, H.J., Naranayan, G. (2018). Future Perspectives of IRE. In: Meijerink, M., Scheffer, H., Narayanan, G. (eds) Irreversible Electroporation in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-55113-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55113-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55112-8

  • Online ISBN: 978-3-319-55113-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation