Rodentia Locomotion

  • Reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior
  • 64 Accesses

Synonyms

Rodent locomotion; Rodent gaits

Definition:

Movement used by members of the order Rodentia to transverse their environment.

The Rodentia encompasses a diverse family of species; by size, the order ranges from the Baluchistan pygmy jerboa at 3.75 grams and 4.4 centimeter body length to the capybara at 66 kilograms and 134 centimeter body length. Accordingly, species have ranging habitat preferences from deserts to urban environments. While Rodentia includes many common pests, many of these species play important ecological roles including being keystone species in some ecosystems (Martínez-Estévez et al. 2013). For example, the prairie dog maintains soil properties, creates new islands of habitat, and improves nutritional quality of forage (Martínez-Estévez et al. 2013). Species such as the squirrel, scaly-tailed squirrel, woodrat, and chipmunk inhabit arboreal environments (Essner 2007; Karantanis et al. 2017), while gophers, mole rats, groundhogs, and prairie dogs spend most...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Carlson, M., & Welker, W. I. (1976). Some morphological, physiological and behavioral specializations in north American beavers (Castor canadensis). Brain, Behavior and Evolution, 13(4), 302–326. https://doi.org/10.1159/000123818.

    Article  PubMed  Google Scholar 

  • Casanovas-Vilar, I., Alba, D. M., Almécija, S., Robles, J. M., Galindo, J., & Moyà-Solà, S. (2008). Taxonomy and paleobiology of the genus Chalicomys Kaup, 1832 (Rodentia, Castoridae), with the description of a new species from Abocador de can Mata (Vallès-Penedès Basin, Catalonia, Spain). Journal of Vertebrate Paleontology, 28(3), 851–862.

    Article  Google Scholar 

  • Dawson, T. J. (1976). Energetic cost of locomotion in Australian hop** mice. Nature, 259(5541), 305–307.

    Article  Google Scholar 

  • Essner, R. L. (2007). Morphology, locomotor behaviour and microhabitat use in north American squirrels. Journal of Zoology, 272(1), 101–109. https://doi.org/10.1111/j.1469-7998.2006.00247.x.

    Article  Google Scholar 

  • Flaherty, E. A., Ben-David, M., & Smith, W. P. (2010). Quadrupedal locomotor performance in two species of arboreal squirrels: Predicting energy savings of gliding. Journal of Comparative Physiology B, 180(7), 1067–1078.

    Article  Google Scholar 

  • Gleeson, T. T., & Hancock, T. V. (2001). Modeling the metabolic energetics of brief and intermittent locomotion in lizards and rodents. Integrative and Comparative Biology, 41(2), 211–218. https://doi.org/10.1093/icb/41.2.211.

    Article  Google Scholar 

  • Granatosky, M. C. (2018). Quadrupedal. In J. Vonk & T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior (pp. 1–6). Springer International Publishing. https://doi.org/10.1007/978-3-319-47829-6_1442-1.

  • Granatosky, M. C., Miller, C. E., Boyer, D. M., & Schmitt, D. (2014). Lumbar vertebral morphology of flying, gliding, and suspensory mammals: Implications for the locomotor behavior of the subfossil lemurs Palaeopropithecus and Babakotia. Journal of Human Evolution, 75, 40–52. https://doi.org/10.1016/j.jhevol.2014.06.011

  • Granatosky, M. C., Schmitt, D., & Hanna, J. (2019). Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates. Journal of Experimental Biology, 222(2), jeb185702. https://doi.org/10.1242/jeb.185702.

  • Hildebrand, M. (1980). The adaptive significance of tetrapod gait selection. American Zoologist, 20(1), 255–267.

    Article  Google Scholar 

  • Hoyt, D. F., & Taylor, C. R. (1981). Gait and the energetics of locomotion in horses. Nature, 292(5820), 239–240.

    Article  Google Scholar 

  • Javidi, M., McGowan, C. P., Schiele, N. R., & Lin, D. C. (2019). Tendons from kangaroo rats are exceptionally strong and tough. Scientific Reports, 9(1), 1–9.

    Article  Google Scholar 

  • Karantanis, N.-E., Rychlik, L., Herrel, A., & Youlatos, D. (2017). Comparing the arboreal gaits of Muscardinus avellanarius and Glis glis (Gliridae, Rodentia): A first quantitative analysis. Mammal Study, 42(3), 161–172. https://doi.org/10.3106/041.042.0306.

    Article  Google Scholar 

  • Kenagy, G. J., & Hoyt, D. F. (1989). Speed and time-energy budget for locomotion in Golden-mantled ground squirrels. Ecology, 70(6), 1834–1839. JSTOR. https://doi.org/10.2307/1938116.

    Article  Google Scholar 

  • Kramer, D. L., & McLaughlin, R. L. (2001). The behavioral ecology of intermittent locomotion. Integrative and Comparative Biology, 41(2), 137–153. https://doi.org/10.1093/icb/41.2.137.

    Article  Google Scholar 

  • Langton, S. D., Cowan, D. P., & Meyer, A. N. (2001). The occurrence of commensal rodents in dwellings as revealed by the 1996 English house condition survey. Journal of Applied Ecology, 38(4), 699–709.

    Article  Google Scholar 

  • Martínez-Estévez, L., Balvanera, P., Pacheco, J., & Ceballos, G. (2013). Prairie dog decline reduces the supply of ecosystem services and leads to desertification of semiarid grasslands. PLoS One, 8(10), e75229.

    Article  PubMed  PubMed Central  Google Scholar 

  • McGowan, C. P., & Collins, C. E. (2018). Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hop**. Journal of Experimental Biology, 221(12).

    Google Scholar 

  • Reilly, S. M., McElroy, E. J., & Biknevicius, A. R. (2007). Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods. Zoology, 110(4), 271–289.

    Article  PubMed  Google Scholar 

  • Schmidt, M. (2005). Hind limb proportions and kinematics: Are small primates different from other small mammals? Journal of Experimental Biology, 208(17), 3367–3383. https://doi.org/10.1242/jeb.01781.

    Article  PubMed  Google Scholar 

  • Schmidt, A., & Fischer, M. S. (2010). Arboreal locomotion in rats—The challenge of maintaining stability. Journal of Experimental Biology, 213(21), 3615–3624. https://doi.org/10.1242/jeb.045278.

    Article  PubMed  Google Scholar 

  • Thorington, R. W., Jr., & Santana, E. M. (2007). How to make a flying squirrel: Glaucomys anatomy in phylogenetic perspective. Journal of Mammalogy, 88(4), 882–896.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Granatosky .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alam, M., Seraj, S.A., Habib, N., Granatosky, M.C. (2022). Rodentia Locomotion. In: Vonk, J., Shackelford, T.K. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-55065-7_808

Download citation

Publish with us

Policies and ethics

Navigation